With:
A Power Function $f(x)=x^n$, where $x\in[0,1]$ and $n\ge0$.
A Cubic Bezier with points $P_0, P_1, P_2, P_3$ such that $P_0=(0,0)$ and $P_3=(1,1)$. The Cubic Bezier function is $B(t)=(1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3$.
Given:
The $n$ in the power function.
How can I get $P_1$ and $P_2$? An approximate solution within about 1% would be acceptable.