Prove: ${n\choose 1}-3{n\choose 3}+9{n\choose 5}-...=\frac{-1}{\sqrt{3}}(-2)^n\sin\frac{2n\pi}{3}$
How to use binomial theorem on a left sum?
Prove: ${n\choose 1}-3{n\choose 3}+9{n\choose 5}-...=\frac{-1}{\sqrt{3}}(-2)^n\sin\frac{2n\pi}{3}$
How to use binomial theorem on a left sum?
We could also start with $\sin\left(\frac{2\pi n}{3}\right)$ and use de Moivre's formula in order to derive the binomial expression on the LHS.
$$ $$
Comment:
In (1) we apply de Moivre's formula.
In (2) we take odd index values $2k+1$ since we need the imaginary part only.