Could you please help me. How do I sum the following:
$$\sum_{k=n}^{\infty}\left(n-k\right)e^{-\lambda}\frac{\lambda^{k}}{k!}$$
If the summation had started at 0, then it would be simply an expectation of (n-k), where K is the Poisson distribution.
Taylor series:
$$ e^{\lambda x} = \sum^{\infty}_{k=0} \frac {(\lambda x) ^k}{k!}$$
We get
$$e^{\lambda } = \sum^{\infty}_{k=0} \frac {\lambda ^k}{k!} $$
Simplify the equation in the question:
$$\sum_{k=n}^{\infty}\left(n-k\right)e^{-\lambda}\frac{\lambda^{k}}{k!} = n e^{-\lambda}\sum_{k=n}^{\infty}\frac{\lambda^{k}}{k!}-\lambda e^{-\lambda}\sum_{k=n}^{\infty}\frac{\lambda^{k-1}}{(k-1)!} =n-\lambda-ne^{-\lambda}\sum^{n-1}_{k=0} \frac {\lambda ^k}{k!}+\lambda e^{-\lambda}\sum^{n-2}_{k=0} \frac {\lambda ^k}{k!}$$
Hence the result is:
$$(n-\lambda)(1-e^{-\lambda}\sum^{n-2}_{k=0} \frac {\lambda ^k}{k!})-ne^{-\lambda}\frac {\lambda ^{n-1}}{(n-1)!}$$
where $n\geq 2$
Special cases:
1.$n=0$ , $-\lambda$
2.$n=1$ , $1-\lambda-e^{-\lambda}$