I have two Riemannian manifolds, $(M,g)$ and $(\widetilde{M},\widetilde{g})$ and two maps $\varphi, \psi : M \to \widetilde{M}$, which are both local isometries. I am trying to show that the set $A = \{ p \in M \mid d \varphi_p = d \psi_p \}$ is closed in $M$ (where $d \varphi_p$ is the differential at the point $p$). I know that I should be able to use continuity of the global differentials $d \varphi$ and $d \psi$ to prove this, but I keep running into problems when I try to write $A$ as the preimage of a closed set. For example, I tried writing $A = \pi((d \varphi - d \psi)^{-1}(\{ 0_{\widetilde{q}} \mid \widetilde{q} \in \widetilde{M} \}))$, but this will give me that $A = M$ even if I don't have that $d \varphi_p = d \psi_p$ for all $p \in M$. I'm sure there is something obvious that for whatever reason I'm just not seeing... what is it?
2025-01-12 23:35:59.1736724959
proving a particular subset of a Riemannian manifold is closed using continuity
40 Views Asked by phaiakia https://math.techqa.club/user/phaiakia/detail At
1
There are 1 best solutions below
Related Questions in DIFFERENTIAL-GEOMETRY
- Are Christoffel symbols invariant under reparameterization of the curve?
- Tangent bundle equivalence not a pushforward
- Find the interior product of a basic p-form $\alpha = dx_1 \wedge dx_2 \wedge \ldots \wedge dx_p$ and a vector field $X$
- Showing Hofer's metric is bi-invariant
- What does it mean to 'preserve the first fundamental form'?
- proving a given curve is a geodesic
- Find the area of a double lune
- Commuting Covariant Derivatives in Derivation of First Variation Formula
- Every diffeomorphism which is an isometry is also conformal
- How do I make sense of terms $X^j\partial_j(Y^i)$ in the Lie bracket of vector fields?
Related Questions in DIFFERENTIAL-TOPOLOGY
- idempotent bundle homomorphism has constant rank
- Defining differentiability on a topological manifold
- Definition of Riemannian Metric
- Construct a diffeomorphism that extends the identity map
- Difference between $\mathbb{T}^n$ and $S^n$ and applications to dynamics (Euler angles and configuration manifolds)
- Smooth diffeomorphism and $C^1$ diffeomorphism
- proving a particular subset of a Riemannian manifold is closed using continuity
- Faulty Argument: Chern number of U(1)-bundle over $T^2$ is zero?
- Generalized Jordan-Brower separation theorem
- How did the smoothness of map into R^m transfer to the smoothness of map into R
Related Questions in RIEMANNIAN-GEOMETRY
- Are Christoffel symbols invariant under reparameterization of the curve?
- proving a given curve is a geodesic
- Commuting Covariant Derivatives in Derivation of First Variation Formula
- starry regular icosahedron
- How to compute that $\mathcal{L}_Vg_{ij}=g_{ik}\nabla_jV^k+g_{jk}\nabla_iV^k$
- Sign of Riemannian and application of commutating formula .
- Definition of Riemannian Metric
- The linearization of a system and the derivative of operator.
- Compute of metric and curvature under transformation of coordinates.
- proving a particular subset of a Riemannian manifold is closed using continuity
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
For an elementary reasoning you can use the fact that (in finite dimensional Riemanian manifolds), for a set $A$ to be closed, it is sufficient to show that $a_n\rightarrow a$ with $a_n\in A$ implies $a\in A$. This follows from continuity of the differentials.