I tried proving that
Every bounded increasing sequence converges in $\mathbb{R}$.
implies that $\mathbb{R}$ has the least upper bound. Here, $\mathbb{R}$ is taken as an ordered field which contains the natural numbers.
I came to a conceptual problem in a particular step of my atempt, which I don't know if it is justified. I'll highlight it below:
Proof: Since you can prove the Archimedean property directly from MCT, it also follows easily the density of rationals.
(IDEA: We take an increasing sequence. We would want it to converge to the $\sup$, but it may not necessarily converge (indeed, it most likely will not). We proceed with stubbornness.)
Let $A$ be bounded by above, non-empty. Assume that there is no least upper bound of $A$.
Consider $\Omega$ (the first uncountable ordinal).
Define a function $f: \Omega \rightarrow \mathbb{Q}$ by transfinite recursion:
Take $f(0)$ to be any rational smaller than an element of $A$.
Given $f(a)$, take $f(a+1)$ to be a rational greater than $f(a)$ and smaller than an element of $A$.
$\color{red}{\text{Given a limit ordinal $\gamma$, suppose we have defined an increasing function on the ordinals}}$ $\color{red}{\text{for all ordinals smaller than $\gamma$}}$. We have that there exists an increasing sequence of ordinals $\alpha_n$ smaller than $\gamma$ that converges to the limit ordinal (order topology). The associated $f(\alpha_n)$ is a bounded increasing sequence of real numbers, hence converge to a given real number $x$. Take a rational number which is greater than $x$, and smaller than an element of $A$ (this is guaranteed by the assumption that there is no least upper bound of $A$).
We have thus constructed an injection from $\Omega$ to $\mathbb{Q}$. Since $\mathbb{Q}$ is enumerable and $\Omega$ isn't, we have a contradiction.
My conceptual doubt comes from the red part... I am assuming not only that I have defined the function on the smaller ordinals, but also that the function satisfies something I want. Is this valid? Why?
Pursuing your idea, but from above:
First, note that your hypothesis implies: $$\text{Every bounded decreasing sequence converges in $\Bbb R$,}\tag{BDSC}$$ because if $(a_n)$ is a bounded decreasing sequence in $\Bbb R$ with limit $L$, then $(-a_n)$ is a bounded increasing sequence with $(-a_n)\to -L$.
It's also worth stating that $$ \text{If $(s_n)$ is a bounded decreasing sequence with $\lim_n s_n = L$, then $L = \inf_n s_n$,}$$
i.e. $L$ is the greatest lower bound of the $s_n$.
Suppose $A\ne \emptyset$ has an upper bound but no least upper bound. For $x\in \Bbb R$, let $A<x$ mean that $x$ is an upper bound of $A$: $a< x$ for all $a\in A$. Then by hypothesis, $$\text{if $A<x$ then there is $y<x$ such that $A<y$.}\tag{Hyp}$$
Define $f\colon\omega_1\to \Bbb R$ as follows:
By induction,
for all $\alpha<\omega_1$, $A < f(\alpha).$
This uses (Hyp) at successor stages $\alpha+1$ and (BDSC) at limit $\alpha$.
So $f$ is an injection $\omega_1\to\Bbb R$. But there is no such $f$, otherwise we could choose a rational in each interval $\left(f(\alpha+1), f(\alpha)\right)$.