Show that $|ax^2+bx+c|<1$ gives us $|c|<1$

46 Views Asked by At

$a,b,c \in \mathbb{R}$ and for all $-1<x<1$

Show that if $|ax^2+bx+c|=<1$

So :

1) $|c|=<1$

2) $|a+c|=<1$

3) $a^2+b^2+c^2=<5$

For the first one ; if I choose x=0

So |c|=<1

And choosing $x=1$ and $x=-1$ give us |a+b|=<1

So did I prove it for all $x \in [-1,1]$ ?

If No then how can I show it ?

Can someone give me a hint for the third one ?