Prove: $\frac{|z_1|}{|z_2|}=\left| \frac{z_1}{z_2}\right|$
$$\frac{|z_1|}{|z_2|}=\frac{|a+bi|}{|c+di|}=\frac{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}=\sqrt{\frac{{a^2+b^2}}{{c^2+d^2}}}=\left|\frac{z_1}{z_2}\right| $$
I am not sure about the last part $$\sqrt{\frac{{a^2+b^2}}{{c^2+d^2}}}=\left|\frac{z_1}{z_2}\right| $$
To finish off, $$ \frac{z_1}{z_2} = \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{c^2+d^2} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2} $$ so \begin{align} \left|\frac{z_1}{z_2}\right| &= \frac{\sqrt{(ac+bd)^2+(bc-ad)^2}}{c^2+d^2} \\ &= \frac{\sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2}}{c^2+d^2} = \frac{\sqrt{(a^2+b^2)(c^2+d^2)}}{c^2+d^2} = \frac{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}. \end{align}
(There are quicker ways to do it if you already know that $|zw| = |z|\,|w|$.)