Hi I'm struggling with this question.
Let $f : ℝ → ℝ$ be defined by $f(x)=\frac{5}{\sqrt {x^3+4}}$.
Show that this function is invertable.
Hi I'm struggling with this question.
Let $f : ℝ → ℝ$ be defined by $f(x)=\frac{5}{\sqrt {x^3+4}}$.
Show that this function is invertable.
It is clear that $f(-x)=\frac{|2|}{\sqrt{(-x)^2+1}}=\frac{|2|}{\sqrt{(x)^2+1}}=f(x)$, $\forall x\in \mathbb{R}$; hence $f$ cannot be injective (because opposite numbers gets the same image). On the other hand, $f(x)\ne 0$ $\forall x\in \mathbb{R}$, and because of that $f$ cannot be surjective (in fact, $f(x)> 0$, $\forall x$).