For example, if a person wants to earn 250 dollars doing yardwork, and can earn 8 dollars/per hour weeding flower beds and $10/per hour mowing lawn,and wants to work a total of 200 hours, how can you format this to find out how many hours each job must be done? Using the the ax+by=c format.
2026-02-22 21:43:40.1771796620
Solving Linear System Word Problem
63 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in SYSTEMS-OF-EQUATIONS
- Can we find $n$ Pythagorean triples with a common leg for any $n$?
- System of equations with different exponents
- Is the calculated solution, if it exists, unique?
- System of simultaneous equations involving integral part (floor)
- Solving a system of two polynomial equations
- Find all possible solution in Z5 with linear system
- How might we express a second order PDE as a system of first order PDE's?
- Constructing tangent spheres with centers located on vertices of an irregular tetrahedron
- Solve an equation with binary rotation and xor
- Existence of unique limit cycle for $r'=r(μ-r^2), \space θ' = ρ(r^2)$
Related Questions in WORD-PROBLEM
- Remove and replacing of mixture in jar?
- Need help setting up equation for a word problem
- FM Actuary question, comparing interest rate and Discount rate
- Five tyres over $40000$ kilometres
- Followup to Stock Market Probability Question
- Word problem, system of equations - Three Variables
- Word Problem (Weight)
- Apple Cider Word Problem based on D=rt principle
- How to compare degree of invariance (with words)?
- How many additional robots would be required?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Let:
So, the equation system is $$\left\{\begin{array}08x+10y=250\\ x+y=200\end{array}\right.$$
Steps to solve
Multiplying the second equation by $8$ yields $$\left\{\begin{array}08x+10y=250\\ 8x+8y=1600\end{array}\right.$$ Subtracting the second equation from the first yields $$2y=-1350\\ y=-675$$ Substituting that into $x+y=200$ yields $$x+(-675)=200\\ x=200+675\\ x=875$$ Therefore, $x=875$ and $y=-675$.