I have proved that Sp(2n,R) is a subgroup of SL(2n,R). But is there an equality? If no, what counter example can do we have? Thanks
2026-02-22 23:25:32.1771802732
Sp(2n, R) = SL(2n, R)
805 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in LIE-GROUPS
- Best book to study Lie group theory
- Holonomy bundle is a covering space
- homomorphism between unitary groups
- On uniparametric subgroups of a Lie group
- Is it true that if a Lie group act trivially on an open subset of a manifold the action of the group is trivial (on the whole manifold)?
- Find non-zero real numbers $a,b,c,d$ such that $a^2+c^2=b^2+d^2$ and $ab+cd=0$.
- $SU(2)$ adjoint and fundamental transformations
- A finite group G acts freely on a simply connected manifold M
- $SU(3)$ irreps decomposition in subgroup irreps
- Tensors transformations under $so(4)$
Related Questions in SYMPLECTIC-GEOMETRY
- Linear algebra - Property of an exterior form
- Proof that 1-Form on a Symplectic Manifold is Closed?
- Time derivative of a pullback of a time-dependent 2-form
- Understanding time-dependent forms
- What is a symplectic form of the rotation group SO(n)
- Dimension of the Marsden-Weinstein reduction of a coadjoint orbit in the dual of the Lie algebra of the gauge group (Atiyah-Bott context)
- Symplectic form on the n-torus
- Computing the flow on the cotangent bundle
- Action-angle variables in non-compact level sets
- About the tangent space of a coadjoint orbit
Related Questions in SYMPLECTIC-LINEAR-ALGEBRA
- Good free calculator for manipulating symbolic matrices of 6x6 and larger?
- Adjoint orbit of an regular and elliptic element of $\mathrm{SP}(2n,\mathbb{R})$
- Identifying a specific $\operatorname{Sp}(4,\mathbb{C})$-representation
- Gompf's symplectic sum construction and symplectic involution of annulus
- Existence of natural symplectomorphism for two structures in $V \times V$.
- Geometric meaning of Liouville vector field.
- $W_1,...,W_k\subset V$ lagrangian subspaces $\Rightarrow \exists\, L\subset V$ lagrangian with $L\cap W_i=\{0\}$ for all $i$
- Bilinear forms by P B Battacharya, Linear Algebra, Chap 7 Example 7.1.10.(4)
- Every $E\subset V$ with $\dim E=\frac{1}{2}\dim V$ has a Lagrangian complement
- Prove symmetries of eigenvalues of symplectic matrices
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Even the dimensions are different in general. We have $$ \dim Sp(2n)=n(2n+1),\; \dim SL(2n)=(2n)^2-1. $$ For $n=3$ we have $\dim Sp(6)=21$, but $\dim SL(4)=35$. The dimensions coincide with the vector space dimensions of the associated Lie algebras.
References: Finding the dimension of the symplectic group
Dimension of $SL(n,\mathbb{R})$ and some other Lie groups