Let $Q_{2^{n}} = \langle x, y | x^{2^{n-1}}=y^4 = 1, x^{2^{n-2}}=y^2, y^{-1}xy = x^{-1} \rangle$ - generalized quaternion group of order $2^{n}$.
$\operatorname{Hol}(Q_{2^{n}})$ - Holomorph of this group
Let $G = [ \operatorname{Hol}(Q_{2^{n+1}}), \operatorname{Hol}(Q_{2^{n}})]$ - commutator of $\operatorname{Hol}(Q_{2^{n+1}})$
I'm wondering whether $G$ is abelian.
Using the SAGE, I checked that this is true for $n = 3 ... 9$.
Some auxiliary facts:
- $${\rm Aut}(Q_{2^n}) \cong \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{Z}^*_{2^{n-1}}, b\in \mathbb{Z}_{2^{n-1}} \right\} \cong AGL(\mathbb{Z}_{2^{n-1}}, 1)$$ such that for $\varphi \in {\rm Aut}(Q_{2^n})$ $$\varphi (x) = x^a, \varphi (y) = x^by$$
- $[Q_{2^n}, Q_{2^n}] = \langle x^2 \rangle$
- $[{\rm Aut}(Q_{2^n}), {\rm Aut}(Q_{2^n})] = \left\{ \varphi : \varphi(x) = x, \varphi (y) = x^by,\space b\in 2\mathbb{Z}_{2^{n-1}}\right\}$
Note that
Consider two elements from the Holomorph $\varphi g, \phi h\in {\rm Hol}(Q_{2^n})$. Note that $\varphi g \cdot \phi h = \varphi \phi g^{\phi}h$ and $(\varphi g)^{-1} = \varphi^{-1} (g^{-1})^{\varphi^{-1}}$.
As anyone can see, $[\varphi g, \phi h] = [\varphi, \phi] \cdot (g^{\phi} h g^{-1} (h^{-1})^{\varphi})^{\varphi^{-1} \phi^{-1}} = [\varphi, \phi] \cdot \alpha$. $$\alpha = (g^{\phi} h g^{-1} (h^{-1})^{\varphi})^{\varphi^{-1} \phi^{-1}} = (g^{\phi}g^{-1} [g,h] h (h^{-1})^{\varphi})^{\varphi^{-1} \phi^{-1}}$$ As above, $g^{\phi}g^{-1}$, $h (h^{-1})^{\varphi}$ $\in \langle x \rangle$ and $[g,h]\in \langle x^2 \rangle \subset \langle x \rangle$, then $\alpha \in \langle x \rangle$, because $\varphi^{-1} \phi^{-1}$ - automorphism.
In that way, for some elements $\tau \alpha, \sigma \beta \in [{\rm Hol}(Q_{2^n}),{\rm Hol}(Q_{2^n})]$ we have that $\beta^{\tau} = \beta$ and $\alpha^{\sigma} = \alpha$.
Then $$\tau \alpha \cdot \sigma \beta = \tau \sigma \alpha^{\sigma} \beta = \tau \sigma \alpha \beta = \sigma \tau \beta \alpha = \sigma \tau \beta^{\tau} \alpha = \sigma \beta \cdot \tau \alpha,$$ e.g. $[{\rm Hol}(Q_{2^n}),{\rm Hol}(Q_{2^n})]$ is abelian.