Consider the covariance matrix of multinomial random variable $A = \mathbf{P} - \mathbf{p}\mathbf{p}^{T}$, where $\mathbf{p} = (p_{1},\ldots,p_{n})^{T}$ and $\mathbf{P} = \rm{diag}(\mathbf{p})$. Is there any formula for $\rm{trace}(A^{n})$?
2026-02-22 19:55:19.1771790119
Trace of power of multinomial co-variance matrix
127 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in RANDOM-VARIABLES
- Prove that central limit theorem Is applicable to a new sequence
- Random variables in integrals, how to analyze?
- Convergence in distribution of a discretized random variable and generated sigma-algebras
- Determine the repartition of $Y$
- What is the name of concepts that are used to compare two values?
- Convergence of sequences of RV
- $\lim_{n \rightarrow \infty} P(S_n \leq \frac{3n}{2}+\sqrt3n)$
- PDF of the sum of two random variables integrates to >1
- Another definition for the support of a random variable
- Uniform distribution on the [0,2]
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It is easy to see that $\mathrm{tr}(A^n)$ is a symmetric function of the $p_i$, without needing a formula for $\mathrm{tr}(A^n)$. Let $S$ be a permutation matrix, let $\mathbf q=S\mathbf p$, $\mathbf Q=S\mathbf PS^T$, and $B=\mathbf Q-\mathbf q\mathbf q^T$, so the entries $q_i$ of $\mathbf q$ are a permutation of the $p_i$. Note that all permutations of the $p_i$ are obtainable this way. If the vector $X$ has a multinomial distribution with parameters $\mathbf p$ and $n$, then the vector $Y=SX$ is multinomial with parameters $\mathbf q$ and $n$. Note that $$B^n=(SAS^T)^n = (SAS^T)(SAS^T)\cdots(SAS^T) = S A (S^TS) A (S^TS) A \cdots(S^TS) A S^T = SA^nS^T$$ and so $\mathrm{tr}(B^n)=\mathrm{tr}(A^n)$.