Does this statement hold?
If $$ \lambda_{\min}(B)\leq \lambda_{\min}(C),$$ then $$ \lambda_{\min}(BA)\leq \lambda_{\min}(CA),$$ where $A,B,C$ are symmetric Positive Definite Matrices.
Does this statement hold?
If $$ \lambda_{\min}(B)\leq \lambda_{\min}(C),$$ then $$ \lambda_{\min}(BA)\leq \lambda_{\min}(CA),$$ where $A,B,C$ are symmetric Positive Definite Matrices.
Copyright © 2021 JogjaFile Inc.
There are easy counterexamples with $2 \times 2$ diagonal matrices.