Let $z=x+ i y$ , $x,y>0$ be a complex number. What conditions on $\alpha, \beta \in \mathbb{R}$ (or on $x$ and $y$) must be imposed so that the following inequality holds. \begin{align*} \vert z \vert^2>\alpha \mathrm{Re}(z)+\beta \mathrm{Im}(z). \end{align*} Is there any result which can help in this regard?
2026-02-22 19:29:59.1771788599
Absolute Value of a Complex Number Inequality
79 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in COMPLEX-ANALYSIS
- Minkowski functional of balanced domain with smooth boundary
- limit points at infinity
- conformal mapping and rational function
- orientation of circle in complex plane
- If $u+v = \frac{2 \sin 2x}{e^{2y}+e^{-2y}-2 \cos 2x}$ then find corresponding analytical function $f(z)=u+iv$
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- order of zero of modular form from it's expansion at infinity
- How to get to $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz =n_0-n_p$ from Cauchy's residue theorem?
- If $g(z)$ is analytic function, and $g(z)=O(|z|)$ and g(z) is never zero then show that g(z) is constant.
- Radius of convergence of Taylor series of a function of real variable
Related Questions in INEQUALITY
- Confirmation of Proof: $\forall n \in \mathbb{N}, \ \pi (n) \geqslant \frac{\log n}{2\log 2}$
- Prove or disprove the following inequality
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
- Solution to a hard inequality
- Is every finite descending sequence in [0,1] in convex hull of certain points?
- Bound for difference between arithmetic and geometric mean
- multiplying the integrands in an inequality of integrals with same limits
- How to prove that $\pi^{e^{\pi^e}}<e^{\pi^{e^{\pi}}}$
- Proving a small inequality
- Continuity of composite functions.
Related Questions in ABSOLUTE-VALUE
- To find the Modulus of a complex number
- What does $|a| = |b|$ is equal to?
- Symmetric polynomial written in elementary polynomials
- If $|ax^2+bx+c|\le \frac12$ for all $|x|\le1$, then $|ax^2+bx+c|\le x^2-\frac12$ for all $|x|\ge1$
- Proving that a double integral converges
- If $\sqrt{9−8\cos 40^{\circ}} = a +b\sec 40^{\circ}$, then what is $|a+b|$?
- Proving that inequalities $\|a\|_{\infty} \leq \|a\|_2 \leq \sqrt{n} \|a\|_{\infty}$ are true and sharp.
- Find a number $M$, such that $|x^3-4x^2+x+1| < M$ for all $1<x<3$
- Absolute Value of a Complex Number Inequality
- Maximum of a product of absolute values
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Note that the given inequality is equivalent to $$x^2-\alpha x+y^2-\beta y>0$$ that is, after multiplying both sides by $4$, $$(2x-\alpha)^2+(2y-\beta)^2>(0-\alpha)^2+(0-\beta)^2,$$ which means that the point $(\alpha,\beta)$ is closer to the point $(2x,2y)$ than to the origin $(0,0)$.
What is, from the geometric point of view, the set of such points $(\alpha,\beta)$?
Give it a try by making a drawing!
P.S. There are infinite $(\alpha,\beta)$ such that $x^2+y^2=\alpha x+\beta y$. All the points along the line bisector of the segment with endpoints $(0,0)$ and $(2x,2y)$ (which includes $\alpha=x$ and $\beta=y$).