Suppose that $A$ and $B$ are AF-algebras and $\varphi, \psi \colon A \to B$ be $*$-homomorphisms with $K_0(\varphi) = K_0(\psi)$. Since $A$ is an AF-algebra, we may write $A = \bigcup_{n \in \mathbb{N}} A_n$ where each $A_n$ is finite dimensional and such that the sequence of $A_n$'s is increasing. Now let for each $n \in \mathbb{N}$ the maps $\varphi_n$ and $\psi_n$ be the restrictions of $\varphi$ and $\psi$ to $A_n$, respectively. Is it now true that $K_0(\varphi_n) = K_0(\psi_n)$ for each $n \in \mathbb{N}$? And if it is the case, why is it true?
2026-02-22 19:30:32.1771788632
AF-algebras and K-theory
104 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in OPERATOR-ALGEBRAS
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- hyponormal operators
- Cuntz-Krieger algebra as crossed product
- Identifying $C(X\times X)$ with $C(X)\otimes C(X)$
- If $A\in\mathcal{L}(E)$, why $\lim\limits_{n\to+\infty}\|A^n\|^{1/n}$ always exists?
- Given two projections $p,q$ in a C$^{*}$-algebra $E$, find all irreducible representations of $C^{*}(p,q)$
- projective and Haagerup tensor norms
- AF-algebras and K-theory
- How to show range of a projection is an eigenspace.
- Is $\left\lVert f_U-f_V\right\rVert_{op}\leq \left\lVert U-V\right\rVert_2$ where $f_U = A\mapsto UAU^*$?
Related Questions in C-STAR-ALGEBRAS
- Cuntz-Krieger algebra as crossed product
- Given two projections $p,q$ in a C$^{*}$-algebra $E$, find all irreducible representations of $C^{*}(p,q)$
- AF-algebras and K-theory
- How to show range of a projection is an eigenspace.
- Is a $*$-representation $\pi:A\to B(H)$ non-degenerate iff $\overline{\pi(A) B(H)} = B(H)$?
- Spectral theorem for inductive limits of $C^*$-Algebras
- Examples of unbounded approximate units in $C^*$-algebras
- Is there a way to describe these compactifications algebraically?
- Projections in C*-algebras
- Invertible and logarthmic functions on a circle
Related Questions in K-THEORY
- Confusion about relationship between operator $K$-theory and topological $K$-theory
- AF-algebras and K-theory
- An immediate result of fundamental theorem of algebraic $K$-theory.
- Opposite effective classes in a Grothendieck group
- Trivial K-theory implies trivial K-theory of hereditary corners?
- Are there examples of unital and nuclear $C^*$-algebras satisfying the UCT that are not groupoid algebras of an amenable etale groupoid?
- Algebraic $K_2$ as "universal receptacle"?
- How is $K(X\times S^2)$ a $K(X)$ module ?
- Traces on $K(H)$
- Adams operations and an artificial grading on K-theory
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes this is true. If $A$ is the limit of $(A_n,i_n)$ denote by $i_{n,\infty}$ the resulting maps from $A_n$ into $A$. Now the restrictions are given by $\varphi \circ i_{n,\infty}$ resp. $\psi \circ i_{n,\infty}$. But by functoriality of $K_0$ we get $$ K_0(\varphi\circ i_{n,\infty})= K_0(\varphi) \circ K_0(i_{i,\infty}) = K_0(\psi) \circ K_0(i_{n,\infty}) = K_0(\psi \circ i_{n,\infty}). $$ This proves your statement. Another remark is:
Since $B$ has cancellation and $A_n$ is finite dimensional, the restrictions are even unitarily equivalent.