How can I prove that an orientation-preserving self-homeomorphism of the annulus $[0,1]\times S^1$ that preserves each boundary component is isotopic to the identity?
2026-02-22 22:45:44.1771800344
Any orientation-preserving automorphism of the annulus is isotopic to the identity
205 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MAPPING-CLASS-GROUP
- generators for the mapping class group of a neighborhood of curves?
- Given the transformation $T:\Bbb R^5 \to\Bbb R^2$ where $T(x) = Ax$, how many rows and columns does matrix $A$ have?
- Fixed points of finite order mapping classes
- Any orientation-preserving automorphism of the annulus is isotopic to the identity
- Mapping Class Group acts properly discontinuous; Alexander method
- Mapping class group of $S^p \times S^q$
- Is there a solvable subgroup with finite index and finite type in the mapping class group of a surface?
- spin mapping class group of circles
- Homeomorphisms of the 2-sphere $S^2$ fixing a set of points.
- Mapping $\Re(z) > 1$ Across The Complex Plane
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It is false. The mapping class group of the annulus is isomorphic to $\mathbb{Z}$ and it is generated by a Dehn twist around the core of the annulus, which is to say the map defined as $$ T(t,\theta)=(t,\theta +2\pi t). $$ You can find a proof in Farb and Margalit's book A Primer on Mapping Class Group.