Truncated SVD: http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
Reduced SVD, I thought this is essentially the same thing, and it appears to be actually more commonly called this way.
If you could provide reference, that'll be great.
Suppose the shape of $A$ is $m \times n$, written as $\underset{m \times n}{A}$, with rank $r$.
In full SVD:
\begin{align} \underset{m\times n}{A} &= \underset{m \times m,}{U} \underset{m \times n,}{\Sigma} \underset{n \times n}{V^{T}} \end{align}
In reduced SVD:
so it becomes
\begin{align} \underset{m\times n}{A} &= \underset{m \times r,}{U_r} \underset{r \times r,}{\Sigma_r} \underset{r \times n}{V_r^{T}} \end{align}
Note, both reduced SVD and full SVD results in the original $A$ with no information loss.
In truncated SVD, we take $k$ largest singular values ($0 \lt k \lt r$, thus truncated) and their corresponding left and right singular vectors,
\begin{align} \underset{m\times n}{A} &\approx \underset{m \times k,}{U_t} \underset{k \times k,}{\Sigma_t} \underset{k \times n}{V_t^{T}} \end{align}
$A$ constructed via truncated SVD is an approximation to the original A.
Example 1
For $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \\ \end{bmatrix}$, where $m = 2$, $n = 3$, and $r = 1$.
Full SVD:
\begin{align*} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \color{Blue}{- \frac{2}{\sqrt{5}}} \\ \frac{2}{\sqrt{5}} & \color{Blue}{\frac{1}{\sqrt{5}}} \end{bmatrix} \begin{bmatrix} \sqrt{10} & \color{Gray}{0} & \color{Gray}{0} \\ \color{Gray}{0} & \color{Gray}{0} & \color{Gray}{0} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \color{Red}{- \frac{1}{\sqrt{2}}} & \color{Red}{0} \\ \frac{1}{\sqrt{2}} & \color{Red}{ \frac{1}{\sqrt{2}}} & \color{Red}{0} \\0 & \color{Red}{0} & \color{Red}{1} \end{bmatrix}^T \end{align*}
Note,
Reduced SVD
just remove the colored rows and columns, and it ends with reduced SVD.
\begin{align*} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{10} \\ \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\0 \end{bmatrix}^T \end{align*}
Since A has only one positive singular value, we can't demonstrate truncated SVD with it.
Example 2
We use another example $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ \end{bmatrix}$ with $m=2$, $n=3$, and $r=2$ to show truncated SVD.
Full SVD:
\begin{align*} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & - \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & \color{Gray}{0} \\ 0 & 1 & \color{Gray}{0} \\ \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \color{Red}{\frac{1}{\sqrt{3}}} \\ \frac{2}{\sqrt{6}} & 0 & \color{Red}{- \frac{1}{\sqrt{3}}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \color{Red}{\frac{1}{\sqrt{3}}} \end{bmatrix}^T \end{align*}
Reduced SVD:
\begin{align*} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & - \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T \end{align*}
Truncated SVD:
\begin{align*} \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2}\\ \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{3} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \end{bmatrix}^T \end{align*}
Only the largest singular value $\sqrt{3}$ is taken. $\begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2}\\ \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix}$ is an approximation of the original $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ \end{bmatrix}$.