How could I get the coefficients in the Dirichlet series expansion
$$ \frac{\zeta ' (s)}{\zeta(s)}= \sum_{n=1}^{\infty} \frac{a(n)}{n^s} $$
for the logarithmic derivative of the Riemann zeta function?
How could I get the coefficients in the Dirichlet series expansion
$$ \frac{\zeta ' (s)}{\zeta(s)}= \sum_{n=1}^{\infty} \frac{a(n)}{n^s} $$
for the logarithmic derivative of the Riemann zeta function?
Copyright © 2021 JogjaFile Inc.
Start with
$$\zeta(s) = \sum_{n=1}^{\infty} \frac1{n^s} $$
$$\zeta'(s) = -\sum_{n=1}^{\infty} \frac{\log{n}}{n^s} $$
Further,
$$\frac1{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} $$
where $\mu(n)$ is the Möbius function.
Then
$$\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} $$
where
$$a(n) = -\sum_{p q=n} \mu(p) \log{q} $$
and $p \in \mathbb{N}$, $q \in \mathbb{N}$