I refer to the lovely answer to this question. Is there an exact formula for the argument of the Riemann zeta function? Specifically, I would like to know the arguments along the line Re$(s)=1$. Some numerical computations/visualizations would be nice too.
2025-01-12 23:32:33.1736724753
Argument of the Riemann zeta function on Re(s)=1
1.7k Views Asked by Tian An https://math.techqa.club/user/tian-an/detail At
1
There are 1 best solutions below
Related Questions in COMPLEX-ANALYSIS
- Laurent series of $f(z)=\frac{1}{z^2-1}$
- Integrating using Green's Theorem
- How well does $L_{n,f}$ approximate $f$?
- question over a integration changes order and hard to compute
- Estimate of a (integral) function
- Is the following series convergent or divergent?
- The Laurent series of $\exp(1/z)$: comparing its constant term and the value at $0$
- Whether $f(z) = z$ is analytic at the infinity?
- Does a function with an exponential growth condition necessarily have infinitely many zeros?
- How to derive the value of $\log(-1)$?
Related Questions in NUMBER-THEORY
- Page 99 of Hindry's Arithmetics, follows from exact sequence that $\text{N}(IJ) = \text{N}(J)\text{card}(J/IJ)$?
- How do I solve this over the integers
- How many ways to write a number $n$ as the product of natural numbers $\geq 2$?
- Representing integers as difference of semi-primes
- If $f,g$ are non-zero polynomials and $f$ divides $g$, then $\partial f \leq \partial g$.
- Conjugacy Class in Galois Representations
- Understanding Quadratic Residue Modulo n Structure
- Properties of the Gamma function
- Matrix of quadratic form (in Serre's general notion)?
- Find all pairs of positive integers $(n,k)$
Related Questions in ANALYTIC-NUMBER-THEORY
- When does linear combination of real-rooted entire functions of genus 0 or 1 remain real-rooted?
- A very silly question about the Erdos-Kac theorem
- Asymptotic local limit theorem and applications in analytic number theory
- Series of the totient function
- An understandable explanation of Euler Maclaurin formula for $\sum_{k=1}^n\log^2 k$, and related questions
- Approximating the integral $\int_1^x (t-[t])f'(t)dt$
- Proving that if a function lies within an integral domain, it satisfies the remainder and the root factor theorem
- Show that $| f (0)| ≤ \sqrt{6}$
- Arithmetic Derivative
- Argument of the Riemann zeta function on Re(s)=1
Related Questions in RIEMANN-ZETA
- On evaluating the Riemann zeta function, including that $\zeta(2)\gt \varphi$ where $\varphi$ is the golden ratio
- When does linear combination of real-rooted entire functions of genus 0 or 1 remain real-rooted?
- Clausen zeta function
- Argument of the Riemann zeta function on Re(s)=1
- Is there a contiguous locus of the equality $a = b$ in $\zeta(\rho + \varepsilon)=a + î b$ in the near of a root?
- Are the nontrivial zeroes of the Riemann zeta function countable?
- Riemann zeta function and the volume of the unit $n$-ball
- asymptotic expansion in powers of $ 1/s $
- How to calculate $\zeta(s)$ using residues?
- Could someone explain how the Gram series relates to Riemann's function?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
(first : Glad you liked the answer!)
I'll use the standard notation $\;s:=\sigma+it\;$ (with $\sigma$ and $\,t>0$ real values).
Let's begin with a picture of the complex orbits $\;t\in (2,42)\mapsto\zeta(\sigma+it)\;$ for $\,\sigma=0, \dfrac 12, 1,\dfrac 32$ respectively :
Qualitative discussion :
If we imagine a line going from the origin to the complex point $\zeta(\sigma+it)$ we may conjecture that for $\,\sigma\le \dfrac 12\,$ the (continuous) phase will decrease (the rotation being clockwise for $t\gg 1$) indefinitely as $t\,$ grows while for larger values of $\sigma$ the phase will only oscillate between $-\pi$ and $+\pi$. The following green, red and blue curves show the principal argument for $\,\sigma=0, \dfrac 12, 1\,$ :
The principal argument is illustrated instead of the (continuous) phase (both were illustrated in your link for $\,\sigma=\dfrac 12$). This implies that there will be a jump of $\pm\pi$ for every zero of $\,\zeta\,$ and a jump from $-\pi$ to $+\pi$ after each loop for $\sigma<\dfrac 12$.
In the case $\sigma=\dfrac 12\,$ the phase is known as the very regular Riemann–Siegel theta function $-\theta(t)$ from $\,\displaystyle\zeta\left(\frac 12+it\right)=Z(t)\,e^{-\large{i\theta(t)}}\;$ (c.f. your link or the demonstration to follow). Anyway, from the picture, we may doubt that such a simple solution exists in the case $\,\sigma=1\,$ or even $\,\sigma\neq\frac 12$...
The phase for $\,\sigma=1\,$ appears to 'follow' the principal argument of $\,\zeta\,$ for $\sigma=\dfrac 12$ and thus to have the complexity of the amplitude $Z(t)$ rather than the simplicity of the phase $-\theta(t)$.
Quantitative discussion :
Let's start with the symmetric version of the functional equation $\;\xi(s)=\xi(1-s)\;$ as presented by Riemann with $\,\xi(s)$ defined by : $$\tag{1}\xi(s)=\frac {s(s-1)}2 \,\Gamma\left(\frac s2\right)\,\pi^{-s/2}\,\zeta(s)$$
Since $\,\dfrac {s(s-1)}2=\dfrac {(1-s)(1-s-1)}2\,$ we may remove this common factor from $\;\xi(s)=\xi(1-s)\;$ and expand the logarithm of the result as :
$$\log\Gamma\left(\frac s2\right)-\log(\pi)\,\frac s2+\log \zeta\left(s\right)=\log\Gamma\left(\frac {1-s}2\right)-\log(\pi)\,\frac {1-s}2+\log \zeta\left(1-s\right)$$ or (putting the $\,\log\zeta\;$ terms at the left) : $$\tag{2}\log \zeta\left(s\right)-\log \zeta\left(1-s\right)=\log\Gamma\left(\frac {1-s}2\right)-\log\Gamma\left(\frac s2\right)+\log(\pi)\left(s-\frac 12\right)$$
With the functional equation some usual relations like $\tag{3}\log\zeta(\overline{s})=\overline{\log\zeta(s)},\;\log\Gamma(\overline{s})=\overline{\log\Gamma(s)}\;$ and other useful properties of $\Gamma$ will be helpful.
Let's consider $\,s=\sigma+it\,$ and study $(2)$ in the specific case $\,\sigma=\dfrac 12$ : $$\log \zeta\left(\frac 12+it\right)-\log \zeta\left(\frac 12-it\right)=\log\Gamma\left(\frac {\frac 12-it}2\right)-\log\Gamma\left(\frac {\frac 12+it}2\right)+\log(\pi)it$$ From $(3)$ we are simply subtracting a complex and its complex conjugate (twice) so that this becomes : $$2\,\Im\log \zeta\left(\frac 12+it\right)=-2\,\Im\log\Gamma\left(\frac {\frac 12+it}2\right)+\log(\pi)it$$ i.e. the classical Riemann–Siegel theta function for the case $\,\sigma=\dfrac 12$ : $$\tag{4}\boxed{-\theta(t):=\arg \zeta\left(\frac 12+it\right)=-\arg\Gamma\left(\frac 14+\frac{it}2\right) + \frac {\log(\pi)}2\;t}\quad t\in \mathbb{R}$$
Let's examine $(2)$ with $\,\sigma=0\,$ and thus provide a link with the case of interest $\,\sigma=1$ : $$\tag{5}\log \zeta\left(it\right)-\log \zeta\left(1-it\right)=\log\Gamma\left(\frac {1-it}2\right)-\log\Gamma\left(\frac {it}2\right)+\log(\pi)\left(it-\frac 12\right)$$ We will again deduce the argument from the imaginary part and (using the Legendre duplication formula $(6.1.18)$ for $\Gamma\,$) : \begin{align} \arg\zeta(it)+\arg\zeta(1+it)&=-\arg\left(\Gamma\left(\frac {it}2\right)\Gamma\left(\frac {1+it}2\right)\right)+\log(\pi)\,t\\ &=-\arg\left(\sqrt{\pi}\,2^{1-it}\,\Gamma(it)\right)+\log(\pi)\,t\\ \end{align} Since $\;-\arg\left(2^{-it}\right)=\log(2)\,t\;$ this becomes simply : $$\tag{6}\boxed{\arg\zeta(it)+\arg\zeta(1+it)=-\arg\Gamma\left(it\right) + \log(2\pi)\;t\,}\quad t\in \mathbb{R}$$ $$\text{(up to a $\,2\,\pi\,k\,$ constant depending of normalization)}$$ or the rather neat : $$\tag{7}\boxed{\;\arg\left((2\,\pi)^{-it}\Gamma(it)\,\zeta(it)\,\zeta(1+it)\right)=0\;}\quad t\in \mathbb{R}$$ which appears deep until noticing that the usual functional equation $$\tag{8}\zeta(1+it)=2(2\pi)^{it}\sin\left(\frac {\pi}2(1+it)\right)\Gamma(-it)\zeta(-it)$$ and some Gamma relations transform $(7)$ in the trivial $\quad\arg(\zeta(+it)\,\zeta(-it))=0$.
$\Gamma(it)\,$ is very regular (see the pictures along the line $x=0$) but of course $\;\arg\zeta(it)\,$ is not simpler than $\;\arg\zeta(1+it)$...
Can we learn something more from the real part of $(5)$ ? Well that $$\tag{9}\left|\frac{\zeta(it)}{\zeta(1+it)}\right|=\sqrt{\frac {t\;\tanh\left(\frac{\pi}2\,t\right)}{2\,\pi}}$$
Some references to recent work concerning $\,\zeta(1+it)\,$ (for very different points of view) :
An old paper of Wintner (1936) could also be of interest "The almost periodic behavior of the function $1/\zeta(1+it)$" and many others of course...