$$x \frac{dy}{dx} + y = -2x^6y^4$$
Divided by x
$$ \frac{dy}{dx} + \frac{y}{x} = -2x^5y^4$$
$$n = 4 $$ $$z = \frac{1}{y^3} $$ $$a(x) = \frac{1}{x}$$ $$b(x) = -2x^5 $$
$$\frac{z'}{-4+1} + \frac{1}{x}z = -2x^5 $$
Multiply by -3
$$z' + \frac{-3}{x}z = 6x^5 $$
I could not extract z from this to integrate. What should I do now? Thanks
Integrating factor ... \begin{eqnarray*} IF= \exp(\int \frac{-3}{x} dx ) = x^{-3}. \end{eqnarray*} divide your equation by $x^3$ and it becomes \begin{eqnarray*} \frac{1}{x^3} \frac{dz}{dx} -\frac{3z}{x^4}=\frac{d}{dx}\left( \frac{z}{x^3} \right) =6x^2 \end{eqnarray*} should be easy from here ?