We know that not all matrices can be diagonalized, but all matrices can be block diagonalized (with just one block) How can we find a similarity transformation leading to block diagonalization with the greatest possible number of blocks?
2026-02-22 20:36:24.1771792584
Block diagonalization
4.5k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in DIAGONALIZATION
- Determining a $4\times4$ matrix knowing $3$ of its $4$ eigenvectors and eigenvalues
- Show that $A^m=I_n$ is diagonalizable
- Simultaneous diagonalization on more than two matrices
- Diagonalization and change of basis
- Is this $3 \times 3$ matrix diagonalizable?
- Matrix $A\in \mathbb{R}^{4\times4}$ has eigenvectors $\bf{u_1,u_2,u_3,u_4}$ satisfying $\bf{Au_1=5u_1,Au_2=9u_2}$ & $\bf{Au_3=20u_3}$. Find $A\bf{w}$.
- Block diagonalizing a Hermitian matrix
- undiagonizable matrix and annhilating polynom claims
- Show that if $\lambda$ is an eigenvalue of matrix $A$ and $B$, then it is an eigenvalue of $B^{-1}AB$
- Is a complex symmetric square matrix with zero diagonal diagonalizable?
Related Questions in BLOCK-MATRICES
- Determinant of Block Tridiagonal Matrix
- Showing a block matrix is SPD
- Spectrum of tridiagonal block matrix
- Determinant of $14 \times 14$ matrix
- Is this a Hurwitz matrix?
- Determinant of non-all-square block matrix
- Eigenvalues of a block circulant matrix
- Is Schur complement better conditioned than the original matrix?
- Notation of Block Matrix
- How to prove $\det \begin{bmatrix}A & B \\ C & D \end{bmatrix} =\det(AD-BC)$, where $A, B, C,$ and $D$ are $n\times n$ and commuting.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Every matrix with elements in $\mathbb C$ has a Jordan Normal Form. The transform in the canonical basis will have blocks of sizes equal to the sizes of the generalized eigenspaces of the matrix.
The Jordan blocks have a very particular structure:
$$\left[\begin{array}{ccc}\lambda&1&0&\cdots&0\\0&\lambda&1&0&0\\0&\ddots&\ddots&\ddots&0\\0&0&0&\lambda&1\\0&0&0&0&\lambda\end{array}\right]$$
where the $\lambda$ is an eigenvalue for the matrix. It should be possible to prove that the block above can not be further reduced (although I have no proof ready in my magic pockets right now).
In the case you want real elements everywhere you can take a look here