I need to bound the k-th partial sum or the Harmonic series. i.e.
$$ln(k+1)<\sum_{m=1}^{k}\frac{1}{m}<1+ln(k)$$
I'm triying to integrate in $[m,m+1]$ in the relation $\frac{1}{m+1}<\frac{1}{x}<\frac{1}{m}$ for all $x\in[m,m+1]$ and I get: $$\int_{m}^{m+1}\frac{1}{m+1}dx<ln(m+1)-ln(m)<\int_{m}^{m+1}\frac{1}{m}dx$$ then $$\sum_{m=1}^{k}\frac{1}{m+1}<ln(k)<\sum_{m=1}^{k}\frac{1}{m}$$ but I don know how conclude or continue... please help.
For $m\ge 2$, $1/u\le 1/m \le 1/(u-1)$ for $u \in [m,m+1]$
By integration on this interval
$$\ln(m+1)-\ln m \le 1/m \le \ln m - \ln(m-1)$$
You then just have to sum those inequalities.