Two simple graphs are isomorphic if there is some bijection between the vertex sets and edges are preserved under this mapping. Can this also work for multigraphs? I think that the same definition can be used because we are only adding more edges.
2026-02-22 23:08:44.1771801724
Can we generalize isomorphism of simple graphs?
265 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in GRAPH-ISOMORPHISM
- Isomorphism, two graphs
- Show that both graphs drawn below are isomorphic by giving an isomorphism for them. (Petersen Graph)
- Graph theory: Isomorphic and Complement graphs
- Can we generalize isomorphism of simple graphs?
- Determining isomorphism for multiple graphs
- Determine whether the graph below is isomorphic to Petersen graph.
- Graph Theory | Euler's formula and Graph Isomorphism
- Finding Graph Isomorphisms?
- Proof of similar vertex characteristics in two isomorphic graphs
- What are the 9 non-isomorphic rooted trees with 5 vertices?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes and no.
I assume that by "multigraph" you mean a graph where you allow more than one edge between each pair of vertices.
In that case you can certainly say that $G$ and $H$ are isomorphic iff there is a bijection $f:V(G)\to V(H)$ such that for every $v,u\in V(G)$, the number of $H$-edges from $f(u)$ to $f(v)$ is the same as the number of $G$-edges from $u$ to $v$.
However, when you speak about an isomorphism between $G$ and $H$, you would usually want that to be a combination of a function that maps vertices to vertices and a function that tells exactly which edges in $G$ maps to which edges in $H$. For example if $G$ and $H$ are both directed graphs with $2$ vertices and exactly $2$ parallel edges from one vertex to the other, then there would be two different isomorphisms between $G$ and $H$, depending on which edges map to which.