Imagine we have two functions: $f:R^n \to R$, and $g: R \to R^n$. We want to differentiate their composition: $f(g(x))$. I want to do it in the matrix form. If I do so naively, I get nonsense: $$ \frac{\partial f(g(x))}{\partial x} = \frac{\partial f}{\partial v} \frac{\partial g}{\partial x} $$ The first one is a row vector, the second is also a row vector. We can't multiply them. Where's the mistake? How is it possible to fix it?
2026-02-22 17:40:34.1771782034
Chain rule with intermediate vector function
111 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in MULTIVARIABLE-CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- $\iint_{S} F.\eta dA$ where $F = [3x^2 , y^2 , 0]$ and $S : r(u,v) = [u,v,2u+3v]$
- Proving the differentiability of the following function of two variables
- How to find the unit tangent vector of a curve in R^3
- Prove all tangent plane to the cone $x^2+y^2=z^2$ goes through the origin
- Holding intermediate variables constant in partial derivative chain rule
- Find the directional derivative in the point $p$ in the direction $\vec{pp'}$
- Check if $\phi$ is convex
- Define in which points function is continuous
- Gradient and Hessian of quadratic form
Related Questions in DERIVATIVES
- Derivative of $ \sqrt x + sinx $
- Second directional derivative of a scaler in polar coordinate
- A problem on mathematical analysis.
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Holding intermediate variables constant in partial derivative chain rule
- How would I simplify this fraction easily?
- Why is the derivative of a vector in polar form the cross product?
- Proving smoothness for a sequence of functions.
- Gradient and Hessian of quadratic form
Related Questions in VECTOR-ANALYSIS
- Does curl vector influence the final destination of a particle?
- Gradient and Hessian of quadratic form
- Regular surfaces with boundary and $C^1$ domains
- Estimation of connected components
- Finding a unit vector that gives the maximum directional derivative of a vector field
- Gradient of transpose of a vector.
- Directional derivative: what is the relation between definition by limit and definition as dot product?
- Chain rule with intermediate vector function
- For which $g$ is $f(x)= g(||x||) \frac{x}{||x||}$ divergence free.
- Is complex analysis same difficulty as vector analysis/multivariable calculus?
Related Questions in CHAIN-RULE
- Show that $g \circ f$ is n times differentiable
- Derivative and chain rule exam problem
- Derivative of square of skew symmetric matrix times a vector wrt the argument of the skew symmetric argument
- Show that certain properties remain under inversion
- Multi-variable chain rule - confusion in application
- Chain rule proof by definition
- Find the value of the function (Chain rule)
- Chain rule problem: given $f(x)=\sqrt{4x+7}$ and $g(x)=e^{x+4}$, compute $f(g(x))'$.
- Chain Rule partial derivatives and the wave equation
- Differentiating with respect to $1 - x$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
For $g:\>{\mathbb R}\to{\mathbb R}^n$ the matrix $[dg(t)]$ is a column vector, and for $f:\>{\mathbb R}^n\to{\mathbb R}$ the matrix $[df(x)]$ is a row vector. It follows that the composed map $\phi:=f\circ g:\>{\mathbb R}\to{\mathbb R}$ has derivative $d\phi(t)=df\bigl(g(t)\bigr)\circ dg(t)$ with $1\times1$-matrix $$[\phi'(t)]=\bigl[df\bigl(g(t)\bigr)\bigr]\,[dg(t)]\ ,$$ which works perfectly well in matrix terms.