$$\operatorname{Arg}(-z)=\frac{3\pi}4$$
$$\operatorname{Arg}(-z) - \operatorname{Arg} (z) = \pm \pi$$
$$\implies \operatorname{Arg}(z) = \frac{3\pi}4 + \pi = \frac{7\pi}4$$
so, the solution is a line in the complex plane at $315^\circ$.
Am I doing it right?
Notice that $\operatorname{Arg}(z) \in (-\pi, \pi]$, hence $$\operatorname{Arg}(z) = \frac{7\pi}{4}-2\pi=-\frac{\pi}4$$
It is a half line/ray in the complex plane at $315$ degrees.