If I have a top hat function $$ f(x)=\begin{cases} \gamma & \quad \text{if } \alpha<x<\alpha+\beta\\ 0 & \quad \text{otherwise } \end{cases} $$
and I convolute it with itself:
$$ f*f(x)=\int^{\alpha+\beta}_{\alpha}\gamma f(x-t)\ dt $$
I know the solution is a triangle function but how do I solve this integral?
Answer: $$f*f(x)=\begin{cases} \gamma^2(\beta- |x-2\alpha-\beta|) & \quad \text{if } |x-2\alpha-\beta|< \beta\\ 0 & \quad \text{if } |x-2\alpha-\beta|\ge \beta \end{cases}$$
see the details below
-----------------------------------------------------------------------------
In fact, observes that
$$ \min(x-\alpha,\alpha+\beta) =\min(x,2\alpha+\beta)-\alpha~~~~$$and$$~~~\max(\alpha,x-\alpha-\beta)=\max(x, 2\alpha+\beta)-\alpha-\beta$$
then $$f*f(x)=\int_{\Bbb R} f(t)f(x-t)\ dt =\int^{\alpha+\beta}_{\alpha}\gamma f(x-t)\ dt \\=\int^{\min(x-\alpha,\alpha+\beta)}_{\max(\alpha,x-\alpha-\beta)}\gamma f(x-t)\ dt \\=\int^{\min(x-\alpha,\alpha+\beta)}_{\max(\alpha,x-\alpha-\beta)}\gamma^2 dt \\=\color{red}{\gamma^2 \min(x-\alpha,\alpha+\beta) -\gamma^2 \max(\alpha,x-\alpha-\beta)\\=\gamma^2(\beta- \max(x, 2\alpha+\beta)+\min(x, 2\alpha+\beta)) \\=\gamma^2(\beta- |x-2\alpha-\beta|)}$$
otherwise if $x\in \Bbb R$ is such that $$\max(\alpha,x-\alpha-\beta)\ge\min(x-\alpha,\alpha+\beta)$$ then $$f*f(x) =0$$