Let $S^n:=\{x \in \mathbb R^{n+1} : ||x||=1\}$ . Let $f : S^n \to [0,1]$ be a continuous surjective function , then is it necessarily true that $f^{-1}\{x\}$ is infinite $ \forall x \in [0,1]$ ?
2026-02-22 17:33:10.1771781590
continuous surjective function from $n$-sphere to unit interval
314 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
No. Take $f(x_1,\ldots,x_{n+1})=\frac{x_1+1}2$. Then $f^{-1}(1)=\{(1,0,0,\ldots,0)\}$.