I need to compute the correlation between $y$ and $\hat y$, between $\hat y$ and $r$, and between $y$ and $r$. In this case, $\hat y$ is the estimator of $y$, and $r$ is the residual. The catch is that I need these in terms of $S_{xx}$, $S_{yy}$, and $S_{xy}$, but I only know how to do it with the hat matrix $H$. I have that the correlations in terms of that are $\sqrt H$, $0$, and $\sqrt {I-H}$ respectively, where $I$ is the identity matrix. Any help would be greatly appreciated!
2026-02-22 21:45:01.1771796701
Bumbble Comm
On
Correlation Coefficients in Simple Linear Regression Model
118 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
0
Bumbble Comm
On
Partial answer/hints:
The correlation coefficient between $r$ and $\hat{y}$ is $0$ as they are orthogonal.
The correlation coefficient between $r$ and $y$ is $0$ due the first order condition in the OLS derivation.
The correlation coefficient between $y$ and $\hat{y}$ is the correlation coefficient between $y$ and $x$, namely, $$ r_{y,\hat{y}}=r_{x,y}=\frac{S_{xy}}{S_xS_y} \, . $$
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in STATISTICS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
Related Questions in REGRESSION
- How do you calculate the horizontal asymptote for a declining exponential?
- Linear regression where the error is modified
- Statistics - regression, calculating variance
- Why does ANOVA (and related modeling) exist as a separate technique when we have regression?
- Gaussian Processes Regression with multiple input frequencies
- Convergence of linear regression coefficients
- The Linear Regression model is computed well only with uncorrelated variables
- How does the probabilistic interpretation of least squares for linear regression works?
- How to statistically estimate multiple linear coefficients?
- Ridge Regression in Hilbert Space (RKHS)
Related Questions in CORRELATION
- What is the name of concepts that are used to compare two values?
- Power spectrum of field over an arbitrarily-shaped country
- How to statistically estimate multiple linear coefficients?
- How do I calculate if 2 stocks are negatively correlated?
- Two random variables generated with common random varibales
- Correlation of all zero rows and columns in matrix
- Calculating correlation matrix from covariance matrix - r>1
- Joint probability of (X+Z) $\land$ (Y+Z) for arbitrary distribution of X, Y, Z.
- Phase space: Uncorrelated Gaussian Summed With a Linearly Correlated Gaussian
- Correlation Coefficients in Simple Linear Regression Model
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
if i understood correctly, you need these formulas; Suppose r ; $r_1,r_2,...,r_n$ and y; $y_1,y_2,...,y_n$
$$s_{rr}=\sum_{i=1}^n \frac{(r_i-\overline r)^2}{n-1}$$ $$s_{yy}=\sum_{i=1}^n \frac{(y_i-\overline y)^2}{n-1}$$ $$s_{ry}= \sum_{i=1}^n \frac{(r_i-\overline r)(y_i-\overline y)}{n-1}$$ $$correlation=\frac {s_{ry}}{\sqrt {s_{rr}s_{yy}}}$$