Let $V$ be a Banach space, $W$ a (strict) subspace of $V$, and $U$ a dense proper subset of $V$. When is does there exist a (linear) projection $P^V_W:V\twoheadrightarrow W$, such that $$ P_W^V(U)=W . $$
2026-02-22 22:48:55.1771800535
Covering from Dense Projection
19 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in BANACH-SPACES
- Problem 1.70 of Megginson's "An Introduction to Banach Space Theory"
- Is the cartesian product of two Hilbert spaces a Hilbert space?
- Why is $\lambda\mapsto(\lambda\textbf{1}-T)^{-1}$ analytic on $\rho(T)$?
- Is ${C}[0,1],\Bbb{R}$ homeomorphic to any $\Bbb{R^n}$, for an integer $n$?
- Identify $\operatorname{co}(\{e_n:n\in\mathbb N\})$ and $\overline{\operatorname{co}}(\{e_n : n\in\mathbb N\})$ in $c_0$ and $\ell^p$
- Theorem 1.7.9 of Megginson: Completeness is a three-space property.
- A weakly open subset of the unit ball of the Read's space $R$ (an infinite-dimensional Banach space) is unbounded.
- Separability of differentiable functions
- Showing $u_{\lambda}(x):= \left(\frac{\lambda}{{\lambda}^{2}+|x|^2}\right)^{\frac{n-2}{2}}$ is not sequentially compact in $L^{2^{*}}$
- Proving that a composition of bounded operator and trace class operator is trace class
Related Questions in PROJECTION
- What's wrong with my reasoning regarding projections
- Finding the orthogonal projection of a vector on a subspace spanned by non-orthogonal vectors.
- Coordinates of camera bounding box projected on another object.
- Bounded projection
- Deriving principal component out of cosine similarity
- Projection onto the space spanned by eigenfunctions in a Hilbert space
- Show that T - I is a projection.
- Pose estimation from 2 points and known z-axis.
- Non orthogonal projection of a point onto a plane
- Mercator projection - Use existing equation to solve for degrees
Related Questions in MAP-PROJECTIONS
- Non orthogonal projection of a point onto a plane
- Equal-area projection from sphere to tangent plane
- Howto calculate the latitude of a given y coordinate from a mercator projected map
- How to draw a globe in 2D?
- How to show that a map is linear in $C^n$?
- Covering from Dense Projection
- If projections $P$ and $Q$ are commutative, then $P+Q-PQ$ projects onto $\text{im}P+\text{im}Q$
- Given a closed linear subspace, is there always a projection that maps onto it?
- How can I project a curved surface onto another curved surface?
- What is the formula for the Collignon projection (diamond form)?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?