I'm trying to figure out how to calculate curl ($\nabla \times \vec{V}^{\,}$) when the velocity vector is represented in cylindrical coordinates. The way I thought I would do it is by calculating this determinant:
$$\left|\begin{matrix} e_r & e_{\theta} & e_{z} \\ \frac{\partial }{\partial r} & \frac{1}{r} \frac{\partial }{\partial \theta} & \frac{\partial }{\partial z} \\ v_r & v_\theta & v_z \end{matrix}\right|$$
Which gives:
$$\left\lbrack \frac{1}{r} \frac{\partial v_z}{\partial \theta} - \frac{\partial v_\theta}{\partial z}, \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}, \frac{\partial v_\theta}{\partial r} - \frac{1}{r} \frac{\partial v_r}{\partial \theta}\right\rbrack$$
But I think the correct curl is:
$$\left\lbrack \frac{1}{r} \frac{\partial v_z}{\partial \theta} - \frac{\partial v_\theta}{\partial z}, \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}, \frac{1}{r} \frac{\partial rv_\theta}{\partial r} - \frac{1}{r} \frac{\partial v_r}{\partial \theta}\right\rbrack$$
Can anyone explain why this is? It seems sort of like the way to calculate it is with:
$$\left|\begin{matrix} e_r & e_{\theta} & e_{z} \\ \frac{1}{r}\frac{\partial }{\partial r} & \frac{1}{r} \frac{\partial }{\partial \theta} & \frac{\partial }{\partial z} \\ v_r & rv_\theta & v_z \end{matrix} \right|$$
Is that correct?
In cylindrical coordinates $x = r \cos \theta$, $y = r \sin \theta$, and $z=z$, $ds^2 = dr^2 + r^2 d\theta^2 +dz^2$. For orthogonal coordinates, $ds^2 = h_1^2dx_1^2 + h_2^2dx_2^2 + h_3^2dx_3^2$, where $h_1,h_2,h_3$ are the scale factors. I'm mentioning this since I think you might be missing some of these. Comparing the forms of $ds^2$, $h_1 = 1$, $h_2 = r$, and $h_3 =1$.
With the scale factors identified, $\nabla \times \vec{V}$ becomes
$$\dfrac{1}{h_1 h_2 h_3}\begin{vmatrix} h_1 \vec{e_1} & h_2 \vec{e_2} & h_3 \vec{e_3} \\ \dfrac{\partial}{\partial x_1} & \dfrac{\partial}{\partial x_2} & \dfrac{\partial}{\partial x_3} \\ h_1 V_1 & h_2 V_2 & h_3 V_3 \end{vmatrix}$$
Plugging in the scale factors for cylindrical coordinates gives
$$\dfrac{1}{r}\begin{vmatrix} \vec{e_r} & r \vec{e_ \theta} & \vec{e_z} \\ \dfrac{\partial}{\partial r} & \dfrac{\partial}{\partial \theta} & \dfrac{\partial}{\partial z} \\ V_r & r V_\theta & V_z \end{vmatrix} = \bigg(\dfrac{1}{r} \dfrac{\partial V_z}{\partial \theta} - \dfrac{\partial V_\theta}{\partial z} \bigg) \vec{e_r} + \bigg(\dfrac{\partial V_r}{\partial z} - \dfrac{\partial V_z}{\partial r} \bigg) \vec{e_\theta} + \dfrac{1}{r} \bigg( \dfrac{\partial (r V_\theta)}{\partial r} - \dfrac{\partial V_r}{\partial \theta} \bigg) \vec{e_z}$$