Let $X$ be a minimal algebraic surface of general type and $C\subset X$ an ample irreducible curve. I am reading a text in which the following inequality is used sometimes: $$ K^2_{X}\cdot C^2\leq K_XC\cdot K_XC. $$ Moreover, if I am not wrong, it is claimed to be a consequence of Hodge Index Theorem. How could we prove that inequality? Is it indeed related to the Hodge Index Theorem? Do we need more assumptions on $C$ or $K_X$?
2026-02-22 20:15:39.1771791339
Curves on algebraic surfaces satistying $K^2_{X}\cdot C^2\leq K_XC\cdot K_XC$.
78 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in DIVISORS-ALGEBRAIC-GEOMETRY
- Degree of divisors on curves
- Divisors and Picard Group
- Connexion between the number of poles of a function and the degree of the associated projection map
- Principal divisors of smooth projective varieties
- Global section $s$ of ample line bundle such that $X_s$ is everywhere dense
- Poincare-Euler characteristic and sum of two divisors
- Fulton's exercise $8.10$: divisors in an elliptic curve
- Why is the torsion subgroup of the Neron Severi group a birational invariant?
- Curves on algebraic surfaces satistying $K^2_{X}\cdot C^2\leq K_XC\cdot K_XC$.
- Divisors are cycles for (singular) homology
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, it's Hodge Index. Since $C$ is ample, some multiple of it is very ample, and so $C$ is a basis for the positive definite part of $NS(X)$. Now let $n=C.C, m=C.K, \ell = K.K$; since $C.(mC-nK)=0$, $(mC-nK)^2\le 0$ -- with equality, in fact, if and only if $mC=nK$. This gives us $m^2n+n^2\ell -2m^2n \le 0$, which rearranges to what you want.