De Rham's cohomology groups by definition

75 Views Asked by At

I have to find the De Rham's cohomology groups of $X$, where:

a)$X=S^1\times S^1$.
b) $X=\mathbb{R}^3\setminus \mathbb{R}$.
c) $X=\mathbb{R}^3\setminus S^1$.

(d) $X=\mathbb{R}^3\setminus (L_1\cup C)$, $L_1=\{x=y=0\}$ and $C=\{x^2+y^2=1,z=0\}$.

(e) $X=\mathbb{R}^3\setminus (L_2\cup C)$, $L_2=\{x=3,y=0\}$ and $C=\{x^2+y^2=1,z=0\}$.

I've seen for (a) using Mayer-Vietoris sequence, but I would like to do it by definition. I have no idea.

For (b) I will identify $\mathbb{R}=\{(x,0,0)\}$, and then take $U=\{(x,y,z)/yz>0\}$ and $V=\{(x,y,z)/yz<0\}$, then

$$U\cup V=\mathbb{R}^3\setminus \mathbb{R},\quad U\cap V=\emptyset$$ and then use Mayer-Vietoris.

For (c) $S^1=C\cap \mathbb{R}^2$, where $C=\{(x,y,z)/x^2+y^2=1\}$ the cilynder and $\mathbb{R}^2=\{(x,y,0)\}$. Then

$$\mathbb{R}^3\setminus S^1=\mathbb{R}^3\setminus \left(C\cap \mathbb{R}^2\right) =\left(\mathbb{R}^3\setminus C\right)\cup\left(\mathbb{R}^3\setminus \mathbb{R}^2\right)=U\cup V$$ and then use Mayer-Vietoris.

Are my ideas for (b) and (c) right? Can they be solved by definition?

For the other ones, i can use properties ou M-V sequence. Here is what I tried (d) $X=\left(\mathbb{R^3}\setminus L_1\right)\cap \left(\mathbb{R^3}\setminus C\right)=M\cap N$, but $M$ and $N$ are like (b) and (c).

(e) Thinking...

I will appreciate your help.

Thank you.