Everybody talks about the fact that polyhedra are special CW complexes, and some of the higher dimensional abstract polytopes are too, but nobody tells the exact criteria for a CW complex being a polytope (or I am clumsy a bit). What are these? Please give exact references for this (not only booknames, but pagenumbers too, if possible)!
2026-02-22 18:37:40.1771785460
What are the exact critera for a CW-complex being a polytope?
186 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in REFERENCE-REQUEST
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
- Asymptotics for partial sum of product of binomial coefficients
Related Questions in ALGEBRAIC-TOPOLOGY
- How to compute homology group of $S^1 \times S^n$
- the degree of a map from $S^2$ to $S^2$
- Show $f$ and $g$ are both homeomorphism mapping of $T^2$ but $f$ is not homotopy equivalent with $g.$
- Chain homotopy on linear chains: confusion from Hatcher's book
- Compute Thom and Euler class
- Are these cycles boundaries?
- a problem related with path lifting property
- Bott and Tu exercise 6.5 - Reducing the structure group of a vector bundle to $O(n)$
- Cohomology groups of a torus minus a finite number of disjoint open disks
- CW-structure on $S^n$ and orientations
Related Questions in POLYHEDRA
- Dimension of Flow Polytope
- Algorithm to find the convex polyhedron
- What is the name of the polyhedral shape of the Humanity Star?
- Number of congruences for given polyhedron
- How to find the "interior boundary" for a set of points?
- Do the second differences of the fifth powers count the sphere packing of a polyhedron?
- PORTA software and Polyhedron theory
- Convex polyhedron given its vertices
- Name of irregular convex octahedron
- Coordinates of a tetrahedron containing a cube
Related Questions in POLYTOPES
- Is every finite descending sequence in [0,1] in convex hull of certain points?
- Can we really move disks around a compact surface like this?
- The permutations of (1,1,0,0), (-1,1,0,0), (-1,-1,0,0) are vertices of a polytope.
- Smoothness of a polytope
- Schlegel diagram and d-diagram
- How to find the "interior boundary" for a set of points?
- Simplicial polytope in $\mathbb{R}^n$ with $n+2$ vertices
- What are some examples of 2-polytope/3-polytope that are not simple?
- Contraction of oriented matroid as related to polytope?
- Finding the vertices of linear image of the $n$-simplex
Related Questions in CW-COMPLEXES
- CW complexes are compactly generated
- If $(X, \Gamma)$ is a cell complex and $e \in \Gamma$, then the image of a characteristic map for $e$ equals its closure
- Universal covering space of $\mathbb{R^3}\setminus S^1$
- Are all cell decompositions useful?
- Give an example of an open cell in a cell complex for which the image of the characteristic map is not a closed cell.
- Computing cellular homology of the sphere using a different CW structure
- Showing that a CW complex is compactly generated
- CW complex with fundamental group $\Bbb Z/n$
- CW complex definition ambiguity
- CW complex for Möbius strip
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?