Given
$$\hat{e}_i \times \hat{e}_j=\sum_{k=1}^3\epsilon_{ijk}\hat{e}_k$$
and
$\hat{e}_1, \hat{e}_2, \hat{e}_3$ are the unit vectors in a right handed cartesian coordinate system
Show that:
$$\epsilon_{ijk} = \begin{cases} 1, & \text{if $\space i,j,k \space$ is an even permutation of 1,2,3} \\[2ex] -1, & \text{if $\space i,j,k \space$ is an odd permutation of 1,2,3}\\[2ex] 0, & \text{if $\space i=j,j=k,k=i \space$} \end{cases}$$
What I have done so far:
I know that the cross product $\vec{a} \times \vec{b}$ yields a vector $\vec{c}$ that is orthogonal to the plane spanned by the vectors $\vec{a}$ and $\vec{b}$.
Writing out the sums:
$$\hat{e}_1 \times \hat{e}_2=\sum_{k=1}^3 \epsilon_{12k}\hat{e}_k=\epsilon_{121}\hat{e}_1+\epsilon_{122}\hat{e}_2+\epsilon_{123}\hat{e}_3 \space \space \space \space (1)$$
$$\hat{e}_2 \times \hat{e}_3=\sum_{k=1}^3 \epsilon_{23k}\hat{e}_k=\epsilon_{231}\hat{e}_1+\epsilon_{232}\hat{e}_2+\epsilon_{233}\hat{e}_3 \space \space \space \space (2)$$
$$\hat{e}_1 \times \hat{e}_3=\sum_{k=1}^3 \epsilon_{13k}\hat{e}_k=\epsilon_{131}\hat{e}_1+\epsilon_{132}\hat{e}_2+\epsilon_{133}\hat{e}_3 \space \space \space \space (3)$$
I know that equation $(1)$ needs to yield $\hat{e}_3$.
$\implies\epsilon_{121}=\epsilon_{122}=0; \space \epsilon_{123}=1$
I know that equation $(2)$ needs to yield $\hat{e}_1$
$\implies \epsilon_{232}=\epsilon_{233}=0; \space \epsilon_{231}=1$
I know that equation $(3)$ needs to yield $-\hat{e}_2$
$\implies \epsilon_{131}=\epsilon_{133}=0; \space \epsilon_{132}=-1$
Is this a valid way of "proving" or showing the Levi-Civita symbol or am I doing something wrong? For some reason this doesn't seem right to me.
You are correct. Your proof is totally valid. You can proceed in a similar fashion and prove the other values as well.However in your question, I don't think it will be $\epsilon_{ijk} >-1$ if $\space i,j,k \space$ is an odd permutation of $1,2,3$, rather it should be $\epsilon_{ijk}= -1$ if $\space i,j,k \space$ is an odd permutation of $1,2,3$