Let $F(\Bbb R,\Bbb R)$ is a vector-space of functions $f: \Bbb R\to \Bbb R$. The functions $f(0)=f(-1)$ are an example of subspace? If it's possible I would like some example of functions such that $f(0)=f(-1)$.
2025-01-12 19:03:03.1736708583
Show that $f(0)=f(-1)$ is a subspace
8.9k Views Asked by Domenico Vuono https://math.techqa.club/user/domenico-vuono/detail At
2
$$F(\mathbb{R},\mathbb{R})=\left\{\mathcal{f}:\mathbb{R}\rightarrow \mathbb{R} | \mathcal{f}(0) = \mathcal{f}(-1) \right\}$$ We have to show-
Part-$1$ $\mathcal{f}(x)=0 \ \forall x \in \mathbb{R}$, is the null element. So, $\mathcal{f}(0)=\mathcal{f}(-1)=0$. So, $\mathcal{f} \in F$.
Part-$2$ $$\mathcal{f},\mathcal{g} \in F$$ $$\left(\mathcal{f}+\mathcal{g}\right) (x)=\mathcal{f}(x)+\mathcal{g}(x) $$
$$\left(\mathcal{f}+\mathcal{g}\right) (0)=\mathcal{f}(0)+\mathcal{g}(0)=\mathcal{f}(-1)+\mathcal{g}(-1)=\left(\mathcal{f}+\mathcal{g}\right) (-1)$$
So, $\left(\mathcal{f}+\mathcal{g}\right) \in F$.
Part-$3$ $$\mathcal{f} \in F \text{ and } \alpha \in \mathbb{R}$$ $$(\alpha \mathcal{f})(x)=\alpha \mathcal{f}(x)$$ $$(\alpha \mathcal{f})(0)=\alpha \mathcal{f}(0)=\alpha \mathcal{f}(-1)=(\alpha \mathcal{f})(-1)$$ So, $\alpha \mathcal{f}\in F$.
Ex: $\mathcal{f}(x)=\left|x+\frac{1}{2}\right|$.