if the moment problem is determinate i.e given $L(f)= \int_{\mathbb{R}} fd\mu$ then $\mu$ is unique, how can i show that the the space of polynomials with complex coefficients i.e $C[x]$ is dense in $L^2(\mu)$
2025-01-13 05:57:45.1736747865
determinate moment problem
185 Views Asked by Jaynot https://math.techqa.club/user/jaynot/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- Proving whether the limit of a sequence will always converge to 0?
- Limit of $(5n^2+2n)/(n^2-3)$ using limit definition
- If $\inf f = f(a)$, then $\exists b,c$, $f(b) = f(c)$
- Trying to prove if $S$ is a subset of $R$, every adherent point to $S$ is the limit of a sequence in $S$
- ODE existence of specific solutions
- equivalent definitions of weak topology on a topological vector space
- Bounded derivative implies uniform continuity on an open interval
- Inf and Sup question
- how to prove sup(A) where A={(n+1)/n|n∈N}?
- how to use epsilion-delta limit definition to answer the following question?
Related Questions in FUNCTIONAL-ANALYSIS
- equivalent definitions of weak topology on a topological vector space
- Interpreting function notation?
- Dimension of $\ell^{1}$.
- Existence of an element in the infinite dimensional normed linear space?
- Confusing on lower semi continuous and its application in minimize problem
- Uniform and Compact Open Topology on spaces of maps from $\mathbb{R} \rightarrow \mathbb{R}$
- Trace Class: Relativeness
- Extension theorem for Sobolev spaces $W^{1,\infty}(\Omega)$: is there an elementary proof?
- Counterexample to $L^1$-boundedness of the maximal operator $f \mapsto f^\#$ with $f^{\sharp}(x):=\sup_{Q\ni x}\frac{1}{|Q|}\int_{Q}|f-(f)_{Q}|dy$
- Video lectures on Functional Analysis
Related Questions in MOMENT-PROBLEM
- determinate moment problem
- Moment matching uniform distribution on interval with a discrete distribution
- Symmetrical distribution
- How to find the expected value of $f(x)=\frac{1}{2\sigma}\exp\left(-\frac{|x|}{\sigma}\right)$
- All measures $\alpha,\beta$ on $[0,1]$ satisfying certain moment conditions
- Calculating higher order moments of a product of weigthed average parameters
- Moment expansion of likelihood function
- A probability measure on $[0,1]$ with given moments $a_0,\ldots,a_k$
- Where shall we use fifth order or higher order moment?
- How to result in moment generating function of Weibull distribution?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
you can have an elementary proof from The classical moment problem and some related questions in analysis, Corollary 2.3.3.