Disprove: If $\gcd(n,2^n-1)=1$, then $2^n-1$ is squarefree.
Equivalently, if $2^n-1$ is not squarefree, then $\gcd(n,2^n-1)\neq 1.$
Exercise, which I do,says to show that statement above is false. I checked manually $n \leq 348$ by this page: https://www.alpertron.com.ar/ECM.HTM. Maybe I didn't notice some factor. I tried also by easy computing by supposing to have prime $q$ that $q^2|2^n-1.$
Can you please to provide me with any hint, but no solution.?
$$2^{364} - 1 = 3 \cdot 5 \cdot 29 \cdot 43 \cdot 53 \cdot 113 \cdot 127 \cdot 157 \cdot 911 \cdot 1093^2 \cdot 1613 \cdot 2731 \cdot 4733 \cdot 8191 \cdot \mbox{BIG} $$
and $$ 364 = 4 \cdot 7 \cdot 13 $$ $$ $$ $$ $$ $$ 2^{1755} - 1 = 7 \cdot 31 \cdot 73 \cdot 79 \cdot 151 \cdot 271 \cdot 631 \cdot 937 \cdot 3511^2 \cdot 6553 \cdot 8191 \cdot \mbox{BIG} $$ and $$ 1755 = 27 \cdot 5 \cdot 13 $$
Here is output with few restrictions: