Primes formed by concatenating the mersenne numbers from $2^2-1$ to $2^n-1$

121 Views Asked by At

Concatenate the mersenne numbers $2^2-1$ to $2^n-1$ and define $f(n)$ to be the emerging number , for example $$f(6)=\color\red {3}\color\green {7}\color\red {15}\color\green {31}\color\red {63}$$

We get a prime number for $n=2,3,6,10,23$ and no other such prime numbers with less than $10\ 000$ digits exist.

  • Can we expect infinite many such primes ?

  • What is the next number $n$ such that $f(n)$ is prime ?

The following table shows the numbers $n$ upto $n=1\ 000$ , such that $f(n)$ has no prime divisor less than or equal to $611\ 953$ , the $50\ 000$ th prime. The second column shows the number of digits of $f(n)$

? t=prod(j=1,50*10^3,prime(j));k=2;s=2^k-1;k=k+1;s=c(s,2^k-1);while(k<1000,k=k+1
;s=c(s,2^k-1);if(gcd(s,t)==1,print(k,"  ",length(digits(s)))))
6  8
10  21
18  60
22  87
23  94
45  334
47  363
66  698
99  1538
102  1631
118  2172
150  3484
161  4006
165  4205
183  5159
202  6272
215  7097
221  7495
238  8681
239  8753
258  10187
267  10904
273  11395
282  12152
293  13111
310  14666
317  15331
334  17008
339  17518
341  17724
370  20846
406  25074
425  27463
426  27592
435  28764
453  31182
471  33696
477  34556
497  37501
498  37651
501  38104
509  39326
510  39480
514  40099
526  41986
534  43267
543  44732
551  46054
555  46723
573  49790
575  50137
579  50834
581  51184
582  51360
591  52955
609  56219
615  57328
695  73154
717  77844
723  79149
729  80464
738  82457
742  83351
743  83575
749  84926
767  89044
783  92787
803  97575
846  108276
867  113703
875  115806
891  120070
911  125508
917  127163
934  131910
935  132192
939  133323
946  135313
959  139049
966  141081
?