I always have the confusion that L1 norm is only a seminorm on the L1 space (because L1 norm of a function = 0 iff the function is almost everywhere 0, but not exactly 0), but always called a 'norm'. So is the name 'L1 space' with a.e. equality actually a quotient space of L1 mod all the function with integral 0? And the same with Lp, excluding infinite p.
2026-02-22 21:47:57.1771796877
Does almost everywhere equality means equality on the quotient space?
341 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in QUOTIENT-SPACES
- How to find the Fuschian group associated with a region of the complex plane
- Coset and Fiber
- Proof of Existence of Quotient Topology
- Quotient Spaces and Dimension
- Intersection of Quotient Spaces
- From $[0,1]\times [0,1]$ construct the Klein bottle
- Nice neighborhoods of each "piece" in a manifold connected sum
- A connected manifold $N$ can be identified with its universal covering quotient a discrete group
- How to find dimension of a given quotient vector space?
- Find the ideals of $S^{-1}R$
Related Questions in ALMOST-EVERYWHERE
- Normed bounded sequence of $L^2[0,1]$
- $f:\mathbb R \to \mathbb R$ measurable and $f(x)=f(x+1)$ almost everywhere
- Proof that if $f_n\to f$ a.e., $g_n \to g$ a.e. and $g_n = f_n$ a.e. implies $f=g$ a.e.
- Does the sum $\sum_{n=1}^{\infty}\frac{1}{2^k \cdot |x-r_k|^\frac{1}{2}}$ coverges a.e?
- Uniform convergence of finite sum of functions
- Almost surely convergence of a monotone stochastic process
- Does almost everywhere equality means equality on the quotient space?
- Extending continuous functions from almost everywhere to everywhere
- Sufficient conditions for $L^2$ convergence implying almost everywhere convergence.
- Must a $\Bbb P$-trivial random element be a.s. constant?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
You're are right except for infinite $p$ this will also work. L-p norm is usually defined for space of L-p Lebesgue integrable functions. If you want such norm to be defined without using Lebesgue measure, you could choose space of $C^1[0,1]$. In this case, the function in your example will have positive norm. When Lebesgue measure is used, set of measure zero doesn't matter any more. And you are right about norm are equivalent on classes as you described. For $L^\infty$ with Lebesgue integration, the essential supremum norm is defined as $essup\{b\in\mathbb{R}|m(f^{-1}(b,\infty))=0\}$. This ignores the null-set difference you mentioned.