There's a post here about how we know that the morphisms of smooth manifolds as locally-ringed spaces are the same as the morphisms of smooth manifolds as charts and atlases. I didn't understand the argument, but it was mentioned that the argument breaks down for fields other than $\mathbb{R}$. Does this mean that attempts to take a locally-ringed spaces perspective on various kinds of manifolds over anything other than $\mathbb{R}$ will tend to either fail, or at least have some surprising and perhaps undesirable pathologies due to the morphisms being "too general"?
2026-02-22 23:38:30.1771803510
Does the locally-ringed spaces viewpoint on topology actually do what we want?
55 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in MANIFOLDS
- a problem related with path lifting property
- Levi-Civita-connection of an embedded submanifold is induced by the orthogonal projection of the Levi-Civita-connection of the original manifold
- Possible condition on locally Euclidean subsets of Euclidean space to be embedded submanifold
- Using the calculus of one forms prove this identity
- "Defining a smooth structure on a topological manifold with boundary"
- On the differentiable manifold definition given by Serge Lang
- Equivalence of different "balls" in Riemannian manifold.
- Hyperboloid is a manifold
- Integration of one-form
- The graph of a smooth map is a manifold
Related Questions in DIFFERENTIAL-TOPOLOGY
- Getting a self-homeomorphism of the cylinder from a self-homeomorphism of the circle
- what is Sierpiński topology?
- Bott and Tu exercise 6.5 - Reducing the structure group of a vector bundle to $O(n)$
- The regularity of intersection of a minimal surface and a surface of positive mean curvature?
- What's the regularity of the level set of a ''semi-nondegenerate" smooth function on closed manifold?
- Help me to prove related path component and open ball
- Poincarè duals in complex projective space and homotopy
- Hyperboloid is a manifold
- The graph of a smooth map is a manifold
- Prove that the sets in $\mathbb{R}^n$ which are both open and closed are $\emptyset$ and $\mathbb{R}^n$
Related Questions in RIEMANN-SURFACES
- Composing with a biholomorphic function does not affect the order of pole
- open-source illustrations of Riemann surfaces
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
- Reference request for Riemann Roch Theorem
- Biholomorphic Riemann Surfaces can have different differential structure?
- Monodromy representations and geodesics of singular flat metrics on $\mathbb{H}$
- How to choose a branch when there are multiple branch points?
- Questions from Forster's proof regarding unbranched holomorphic proper covering map
- Is the monodromy action of the universal covering of a Riemann surface faithful?
- Riemann sheets for combined roots
Related Questions in COMPLEX-MANIFOLDS
- Equality of $C^\infty$-functions on a complex manifold
- Diffeomorphism between two manifolds
- Real Lie group acting on a complex manifold
- Question about the definition of a complex manifold
- What does being "holomorphic at the cusps" mean?
- foliation with many tangencies
- Complex Vector Bundle vs Holomorphic Vector Bundle vs Almost Complex Structures
- Proving that $\mathbb{P}^{n}(\mathbb{C})$ is homeomorphic to $S^{2n+1}/S^{1}$
- Fubini-Study on $\mathbb CP^1$
- Is there a complex structure on $\mathbb{R}^2$ such that $f(x,y) = x-iy$ is analytic?
Related Questions in RINGED-SPACES
- Description of tangent space via locally ringed space arrows from dual numbers
- About gluing of sheaves on a cover
- Does the locally-ringed spaces viewpoint on topology actually do what we want?
- The 'Locally Ringed' condition in the definition of a scheme.
- Showing that $\mathbb{P}^1$ is two copies of $\mathbb{C}$ glued together; is there a high-power tool that can help here?
- Are morphisms of algebraic varieties determined by their underlying functions?
- Locally free $\mathcal{O}_{X}$ modules are not projective
- If restricted morphism of ringed spaces are equal, then they are actually equal
- Definition of the sheaf $GL_n(\mathcal{O}_X)$ of invertible $\mathcal{O}_X-$linear functions
- Why adjunction appear to preserve stalk?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?