Find all functions that satisfy $$ f (f (x))=x^2-3x+4$$ Any thoughts and approachs to find $f (x)$ ?
2026-02-22 20:36:50.1771792610
Easy looking functional equation.
111 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-EQUATIONS
- Functional equation $2f\left(\frac{x+y}{2}\right)-f(y)=f''(x)$
- How to solve the integral equation $f(x) = \int_0^x f(x-y)k(x,y)dy+g(x)$ for $f(x)$?
- Easy looking functional equation.
- Solution of $f(ax+b)=kf(x)$ with $k,a,b$ are real numbers
- Deriving $\sin(\pi s)=\pi s\prod_{n=1}^\infty (1-\frac{s^2}{n^2})$ without Hadamard Factorization
- Stationary Condition of Variational Iteration Method
- How to solve the functional equation $f(x + f(x +y ) ) = f(2x) + y$?
- Solution to the functional equation $f(z)=(-1)^zf(1-z)$???
- If $f(a,b)=f(a,c)f(c,b)$ for all $a,b,c$, when can we conclude $f(a,b)=g(a)/g(b)$ for some $g$?
- Functiοnal Εquation in Real Line
Related Questions in FUNCTION-AND-RELATION-COMPOSITION
- Proof verifications: Elementary composition proofs. (if $g\circ f$ is one-to-one, then show $f$ is one-to-one etc.)
- Easy looking functional equation.
- Find matrix associated to linear transformation
- Inverse of a map $T_{(p,q)}(X \times Y) \to T_p X \times T_p Y$
- Prove that composition functions are surjective
- Function Composition Formulas
- Residue of composite functions
- Are there functions (or category of functions) that satisfy following conditions?
- How many successive logs until a number becomes $1$?
- What numbers can be created by $1-x^2$ and $x/2$?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
There is an $f$ that is $C^\infty$ for $x > 3/2.$ It is real analytic for $x \neq 2.$ You can get $C^1$ on the whole line by reflecting across $x = 3/2.$
The method is difficult, see similar http://math.stackexchange.com/questions/208996/half-iterate-of-x2c/209653#209653 for $x^2 + x.$ This version seems more complete How to obtain $f(x)$, if it is known that $f(f(x))=x^2+x$? My best answer on this stuff is http://mathoverflow.net/questions/45608/formal-power-series-convergence/46765#46765 on $f(f(x)) = \sin x,$ and Gottfried posted a lovely picture of the resulting $f.$
We know that we need to use the intricate Ecalle method because the function has a fixed point at $x=2,$ with slope equal to one there. The curve is tangent to the line $y=x,$ which rules out easier methods.