Let $g \geq 2$. Let $S = \langle a_1,b_2,...,a_g,b_g | [a_1,b_1] \cdots [a_g,b_g] \rangle$ be the fundamental group of a genus $g$ surface and let $F_g$ be a free group with $g$ generators. Given two surjections $f_1,f_2 : S \to F_g$ is there a way to determine if there are automophisms $\phi: S \to S$ and $\psi: F_g \to F_g$ so that $f_1 = \phi \circ f_2 \circ \psi$?
2026-02-22 22:38:49.1771799929
Equivalance of surjections from a surface group to a free group
108 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GROUP-THEORY
- What is the intersection of the vertices of a face of a simplicial complex?
- Group with order $pq$ has subgroups of order $p$ and $q$
- How to construct a group whose "size" grows between polynomially and exponentially.
- Conjugacy class formula
- $G$ abelian when $Z(G)$ is a proper subset of $G$?
- A group of order 189 is not simple
- Minimal dimension needed for linearization of group action
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
- subgroups that contain a normal subgroup is also normal
- Could anyone give an **example** that a problem that can be solved by creating a new group?
Related Questions in GEOMETRIC-TOPOLOGY
- Finite covers of handlebodies?
- CW complexes are compactly generated
- Constructing a fat Cantor Set with certain property
- Homologically zero circles in smooth manifolds
- Labeled graphs with unimodular adjacency matrix
- Pseudoisotopy between nonisotopic maps
- A topological question about loops and fixed points
- "Continuity" of volume function on hyperbolic tetrahedra
- Example of path connected metric space whose hyperspace with Vietoris topology is not path connected?
- What is the pushout of $D^n \longleftarrow S^{n-1} \longrightarrow D^n$?
Related Questions in COMBINATORIAL-GROUP-THEORY
- Is there a general way to simplify such group presentations (Free Abelian Group with Relations)?
- The context & motivation for the Tits alternative in combinatorial group theory
- Prove G is a nonabelian group of order 20
- Making linear groups trivial by adding an equal number of generators and relations
- An algorithm determining whether two subgroups of a free group are automorphic
- If the deficiency of a presentation $P$ is $0$ and $P$ is aspherical, then the deficiency of the group $P$ defines is $0$.
- Solution book for "Presentations of Groups" by D. L. Johnson
- Notational confusion about HNN-extensions: $G=K \ast_{H,t}$.
- What is this group $G=\langle a,b,c\mid a^2=1, b^2=1, c^2=ab\rangle$
- Equivalance of surjections from a surface group to a free group
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Reduction of problem, but not an answer:
Suppose $N=\ker f_1 = \ker f_2$. Then $f_1$ and $f_2$ both induce isomorphisms, $f_1' : S/N\to F_g$ and $f_2' : S/N\to F_g$. Then $\phi =f_1'f_2^{\prime -1}$ is an automorphism of $F_g$, and $f_1=\phi f_2$. Thus we only need to find an automorphism $\psi$ of $S$ taking $\ker f_1$ to $\ker f_2$, since then we'll have $\ker f_2\psi = \ker f_1$. Thus the desired result is true if and only if the automorphism group of $S$ acts transitively on normal subgroups $N$ of $S$ with $S/N \cong F_g$.
I'm not sure how to prove that the automorphism group either does or does not act transitively on such subgroups though.