Given an integral $$\int_1^T \frac{f(t)}{t} \, {\rm d}t$$ where $f(t)$ is oscillating and I want to make an estimate I can do the following $$\left|\int_1^T \frac{f(t)}{t} \, {\rm d}t\right| \leq \int_1^T \left|\frac{f(t)}{t}\right| \, {\rm d}t \leq \int_1^T |f(t)| \, {\rm d}t$$ but this is not enough. Is this even possible: $$\left|\int_1^T \frac{f(t)}{t} \, {\rm d}t\right| \leq \left|\int_1^T f(t) \, {\rm d}t \right|\, ? $$
2026-02-22 23:43:14.1771803794
Estimating an integrand
90 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in INTEGRATION
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- How to integrate $\int_{0}^{t}{\frac{\cos u}{\cosh^2 u}du}$?
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- How to find the unit tangent vector of a curve in R^3
- multiplying the integrands in an inequality of integrals with same limits
- Closed form of integration
- Proving smoothness for a sequence of functions.
- Random variables in integrals, how to analyze?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Which type of Riemann Sum is the most accurate?
Related Questions in DEFINITE-INTEGRALS
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Closed form of integration
- Integral of ratio of polynomial
- An inequality involving $\int_0^{\frac{\pi}{2}}\sqrt{\sin x}\:dx $
- How is $\int_{-T_0/2}^{+T_0/2} \delta(t) \cos(n\omega_0 t)dt=1$ and $\int_{-T_0/2}^{+T_0/2} \delta(t) \sin(n\omega_0 t)=0$?
- Roots of the quadratic eqn
- Area between curves finding pressure
- Hint required : Why is the integral $\int_0^x \frac{\sin(t)}{1+t}\mathrm{d}t$ positive?
- A definite integral of a rational function: How can this be transformed from trivial to obvious by a change in viewpoint?
- Integrate exponential over shifted square root
Related Questions in ESTIMATION
- Question on designing a state observer for discrete time system
- Some help with calculating the time remaining please???
- Is the usage of unbiased estimator appropriate?
- How to statistically estimate multiple linear coefficients?
- Is there an intuitive way to see that $\mathbb{E}[X|Y]$ is the least squares estimator of $X$ given $Y$?
- minimizing MSE of estimator $\theta(a,b) = \frac{1}{n} \sum^n_{i=1} Y_ia_i + b$
- a limit about exponential function
- I don't understand where does the $\frac{k-1}{k}$ factor come from, in the probability mass function derived by Bayesian approach.
- hints for calculation of double integral
- estimation of $\mu$ in a Gaussian with set confidence interval
Related Questions in OSCILLATORY-INTEGRAL
- Problem regarding to solve "6 nonlinear dynamic system of first order differential equation" analytically ( approximated )
- Non-vanishing of K-Bessel function
- How to disprove an equality involving a double integral
- Is $\int_{A_t} \frac{1}{|x_j|^{p}}\, dx \leq \sum_{j=1}^{d} \int_{A_{j,t}}\frac{1}{|x_j|^p}\, dx \leq \int_{A_t} \frac{1}{|x|^p} \,dx$?
- Rigorous derivation of the long-time limit of oscillatory integrals
- Inverse of a Fourier Transform is $L^1 \cap L^{\infty}$
- Oscillating function with periodic change of sign and substraction of values
- Estimating an integrand
- Stationary phase for retarded potentials in electromagnetism
- Analytic form of the infinite integration with oscillatory integrand?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The last step can only be done on intervals with fixed sign. So, you have to split an oscillating function into positive and negative domains, and you get
$$\int_{x_1}^{x_2}\frac{|f(t)|}{t}dt\leq \frac{1}{x_1}\int_{x_1}^{x_2}\left|f(t)\right|dt$$ where $x_2>x_1>0$.
The entire integral is then an alternating sum of such terms -- this is the reason why it doesn't work in general. In alternating sums, if you change the magnitude of some terms, you can get any value (imagine if the inequality was exact for positive terms but for negative, they just become zero?)
Let's define
$$a_n=\int_{x_n}^{x_{n+1}}\frac{|f(t)|}{t}dt$$ $$b_n=\int_{x_n}^{x_{n+1}}|f(t)|dt$$ where $x_n$ are zeros of $f(t)$.
Your statement is, that
$$\sum (-1)^n b_n$$ is bounded, and you want to prove that $$\sum (-1)^n a_n$$ is bounded, too.
But that is exactly the Dirichlet test that says (bounded alternating)×(monotonically decreasing to zero)=(convergent).
In our case, the bounded alternating series is $(-1)^n b_n$ and the monotonically decreasing to zero is $1/x_n$, resulting in a statement for $a_n$ which is bounded by the product of these two.
https://en.wikipedia.org/wiki/Dirichlet%27s_test