while solving a summation problem I got stuck at this:
$$\sum _{ n={ 2 }^{ k-1 }+1 }^{ { 2 }^{ k } }{ \left( \psi \left( 2n \right) \right) } $$
The limits of this summation are weird and hence I'm not able to apply the properties of summation of digamma function. Please help.
This is not an answer since based on numerical simulation.
Unable to explicit $$S_k=\sum _{ n={ 2 }^{ k-1 }+1 }^{ { 2 }^{ k } }{ \left( \psi \left( 2n \right) \right) }$$ I compute the numerical values for $0\leq k\leq 20$ and observed that $\log(S_k)$ seems to follow a power law ($a k^b+c$).
A quick and dirty nonlinear regression leads to $$\log(S_k)=1.27064\, x^{0.861389}-0.991638$$ ($R^2=0.999994$) with very significant parameters from a statistical point of view (as shown below). $$\begin{array}{clclclclc} \text{} & \text{Estimate} & \text{Standard Error} & \text{Confidence Interval} \\ a & 1.27064 & 0.0174181 & \{1.23371,1.30756\} \\ b & 0.861389 & 0.0040875 & \{0.852723,0.870054\} \\ c & -0.991638 & 0.0356172 & \{-1.06714,-0.916133\} \\ \end{array}$$
May be, this would give you some ideas.
Edit
Afterwards, inspired by lordoftheshadows's answer and using a CAS, what was found is $$T_k=\sum _{ n=1 }^{ k}{ \left( \psi \left( 2n \right) \right) }=\frac{1}{4} \left(-2 H_k-H_{k+\frac{1}{2}}-4 k+4 (k+1) \psi ^{(0)}(2 k+2)+4 \gamma -2-\log (4)\right)$$ which would then give (hoping no mistake) $$4S_k=2 H_{2^{k-1}}-2 \left(2^k+3\right) H_{2^k}-H_{\frac{1}{2}+2^k}+H_{\frac{1}{2} \left(1+2^k\right)}+4 H_{1+2^{k+1}}-\frac{2}{2^k+1}+2^{k+1} \left(2 \psi ^{(0)}\left(2+2^{k+1}\right)+\gamma -1\right)-2$$