I'm trying to show that convex polyhedra are special cases of spectrahedra. This was left as an exercise to the reader in a convex optimization text that I'm reading. I'm not sure how standard the definitions and notation in this book are, so I'll include them below.
Notation: Letting $A, B \in \mathbb{R}^{m \times m}$ be symmetric matrices, write $B \succeq A$ if $B - A \succeq 0$, i.e., $B-A$ is positive semidefinite. For vectors $a, b \in \mathbb{R}^n$, write $a \geq b$ if $ a_i \geq b_i \forall i \in \{1, 2, \dots, n\}$.
Definition: Given symmetric matrices $A_1, A_2, \dots, A_n, B \in \mathbb{R}^{m \times m}$, the following convex set $$\left\{ x \in \mathbb{R}^n \,\,\middle|\,\, \sum_{i = 1}^n x_i A_i \preceq B \right\}$$ is called a spectrahedron.
Definition: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, $\left\{ x \in \mathbb{R}^n \mid Ax \leq b \right\}$ is called a convex polyhedron.
My attempt so far:
I've been trying to come up with a representation of a spectrahedron, probably with $B = bb^T$. I was thinking of $AA^T = A_i$ for $i = 1, \dots, n$. But I haven't made much progress with this approach. I figure making a solid guess on the form and then showing "$\subseteq$" and "$\supseteq$" is the best way to prove this.
Given $\mathrm A \in \mathbb{R}^{m \times n}$ and $\mathrm b \in \mathbb{R}^m$, let
$$\mathcal P := \{ \mathrm x \in \mathbb{R}^n \mid \rm A x \leq b \}$$
which is a (convex) $\mathcal H$-polytope (i.e., defined by the intersection of closed half-spaces). Let
$$p_i (\mathrm x) := b_i - a_{i1} x_1 - a_{i2} x_2 - \dots - a_{in} x_n$$
where $i \in \{1, 2, \dots, m\}$, be $n$-variate polynomials of degree $1$. Hence,
$$\mathcal P = \{ \mathrm x \in \mathbb{R}^n \mid p_1 (\mathrm x) \geq 0 \land p_2 (\mathrm x) \geq 0 \land \cdots \land p_m (\mathrm x) \geq 0 \}$$
The conjunction of the $m$ non-strict linear inequalities is equivalent to the following linear matrix inequality (LMI)
$$\mathrm M (\mathrm x) := \mathrm M_0 + x_1 \mathrm M_1 + x_2 \mathrm M_2 + \dots + x_n \mathrm M_n = \begin{bmatrix} p_1 (\mathrm x) & 0 & \ldots & 0\\ 0 & p_2 (\mathrm x) & \ldots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \ldots & p_m (\mathrm x)\end{bmatrix} \succeq \mathrm O_m$$
where the $m \times m$ diagonal matrices $\mathrm M_0, \mathrm M_1, \dots, \mathrm M_n$ are given by
$$\mathrm M_0 := \begin{bmatrix} b_1 & 0 & \ldots & 0\\ 0 & b_2 & \ldots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \ldots & b_m\end{bmatrix} \qquad \qquad \mathrm M_j := \begin{bmatrix} -a_{1j} & 0 & \ldots & 0\\ 0 & -a_{2j} & \ldots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \ldots & -a_{m j}\end{bmatrix}$$
for $j \in \{1, 2,\dots, n\}$. Thus, convex polytope $\mathcal P$ can be defined using an LMI
$$\mathcal P = \{ \mathrm x \in \mathbb{R}^n \mid \mathrm M (\mathrm x) \succeq \mathrm O_m \}$$
and, thus, is a (convex) spectrahedron.
convex-analysis discrete-geometry polyhedra polytopes linear-matrix-inequality spectrahedra