Final Value Theorem Z Transform

13.7k Views Asked by At

This is probably really easy but I cannot see the wood for the trees.

I see the discrete time final value theorem given as:

$$ \lim_{k\to \infty}f[k] = \lim_{z\to 1} (z-1)F(z)$$

BUT also expressed as,

$$ \lim_{k\to \infty}f[k] = \lim_{z\to 1} (1-z^{-1})F(z)$$

But, $$\frac{1}{1} - \frac{1}{z} = \frac{z-1}{z}$$

Not $z - 1$

Therefore they are not equivalent. Am I missing something here!?

I feel stupid asking the question. Thanks for your help

1

There are 1 best solutions below

5
On BEST ANSWER

As $z \rightarrow 1$

$$\dfrac{z-1}{z} \rightarrow \dfrac{z-1}{1} = z-1$$

Update: Adding a proof of the final value theorem

Start with the definition of the z-transform $$F(z) = \lim_{N \to \infty} \sum_{k=0}^{N} f[k]z^{-k}$$ and also use the time advance theorem of the z-transform $$z\left[F(z)-f[0]\right] = \lim_{N \to \infty} \sum_{k=0}^{N} f[k+1]z^{-k}$$ Now subtract the first from the second $$(z-1)F(z) - zf[0] = \lim_{N \to \infty} \sum_{k=0}^{N} f[k+1]z^{-k}-f[k]z^{-k}$$ Then take the limit as $z \to 1$ $$\lim_{z \to 1} \space (z-1)F(z) - f[0] = \lim_{N \to \infty} \space f[N+1]-f[0]$$ so $$\lim_{z \to 1} \space (z-1)F(z) = \lim_{N \to \infty} \space f[N+1]=\lim_{N \to \infty} \space f[N]$$

Alternately

Using the time delay theorem of the z-transform $$z^{-1}F(z) = \lim_{N \to \infty} \sum_{k=0}^{N} f[k-1]z^{-k}$$ we can get to $$(1-z^{-1})F(z) = \lim_{N \to \infty} \sum_{k=0}^{N} f[k]z^{-k} -f[k-1]z^{-k}$$ and assuming $f[k] = 0$ for $k <0$ and taking the limit as $z\to1$ $$\lim_{z \to 1} \space (1-z^{-1})F(z) = \lim_{N \to \infty} \space f[N]-f[-1] = \lim_{N \to \infty} \space f[N]$$