How would you go about finding prime factors of a number like $7999973$? I have trivial knowledge about divisor-searching algorithms.
2026-02-22 19:33:11.1771788791
Find a prime factor of $7999973$ without a calculator
9.7k Views Asked by user523628 https://math.techqa.club/user/user523628/detail At
1
There are 1 best solutions below
Related Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in PRIME-FACTORIZATION
- For which natural numbers are $\phi(n)=2$?
- Fractions of the form $\frac{a}{k}\cdot\frac{b}{k}\cdot\frac{c}{k}\cdots=\frac{n}{k}$
- (Number of perfect powers ≤ n) ∼ $\sqrt{n}$?
- Is there a pattern to addition of primesFactored numbers?
- Proof of Fundamental Theorem of Arithmetic: Uniqueness Part of Proof
- Find a prime factor of $7999973$ without a calculator
- Proof verification: Let $gcd(x,y)=1$. If $xy$ is a perfect square, then $x$ and $y$ are perfect squares.
- An idea for approaching Brocard's problem ($n!+1=m^2$)
- Looking for complex roots of unity which also happen to be complex primes
- How can I prove that all prime factors of $f(n,p)=(n+1)^p-n^p$ have form $2kp+1$ (if $p$ - odd prime)?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The thing to notice here is that 7,999,973 is close to 8,000,000. In fact it is $8000000 - 27$. Both of these are perfect cubes. Differences of cubes always factor: $$a^3 - b^3 = (a-b)(a^2+ab+b^2)$$
Here we have $a=200, b=3$, so $a-b= 197$ is a factor.