Find all the solutions of diophantine eq: $x^3-2xy^2+y^3-s^2=0$

434 Views Asked by At

Given $x,y,s$ are natural numbers:

$$x^3-2xy^2+y^3-s^2=0$$

I found the solutions using wolfram alpha

$$(x,y,s) = (1,2,1), (6,10,4), (4,8,8)$$

But how do I prove these are the only solutions? Any tips or reference to papers that study this diophantine equation would be much appreciated.

3

There are 3 best solutions below

6
On

An infinite set of solutions is found when $y=2x$. In this case the equation $x^3 - 2xy^2 + y^3 = s^2$ reduces to: $$x^3 = s^2$$ So we can choose $x=a^2$ for any positive integer $a$, so then $a^6 = s^2$, so $s=a^3$. So the following combination works for any positive integer $a$: $$(x,y,s) = (a^2, 2a^2, a^3)$$

0
On

Here are a number of solutions with cube-free $s.$ For any of these, we get other solutions with $(x t^2, y t^2, s t^3).$ There are so very many because $$ x^3 - 2 x y^2 + y^3 = (x-y)(x^2 + xy - y^2). $$ Furthermore, if $\gcd(x,y) = 1, $ then $\gcd(x-y, x^2 + xy - y^2)=1.$

I don't see any reason to think that all solutions can be described.

 x: 1 =   1      y: 2 =  2     s: 1 =   1 
 x: 6 =  2 3     y: 10 =  2 5     s: 4 =  2^2
 x: 10 =  2 5     y: 5 =  5     s: 25 =  5^2
 x: 10 =  2 5     y: 30 =  2 3 5     s: 100 =  2^2 5^2
 x: 17 =  17     y: 8 =  2^3     s: 57 =  3 19
 x: 19 =  19     y: 95 =  5 19     s: 722 =  2 19^2
 x: 24 =  2^3 3     y: 193 =  193     s: 2327 =  13 179
 x: 30 =  2 3 5     y: 21 =  3 7     s: 99 =  3^2 11
 x: 30 =  2 3 5     y: 130 =  2 5 13     s: 1100 =  2^2 5^2 11
 x: 33 =  3 11     y: 22 =  2 11     s: 121 =  11^2
 x: 33 =  3 11     y: 58 =  2 29     s: 95 =  5 19
 x: 33 =  3 11     y: 132 =  2^2 3 11     s: 1089 =  3^2 11^2
 x: 40 =  2^3 5     y: 65 =  5 13     s: 25 =  5^2
 x: 55 =  5 11     y: 99 =  3^2 11     s: 242 =  2 11^2
 x: 57 =  3 19     y: 133 =  7 19     s: 722 =  2 19^2
 x: 60 =  2^2 3 5     y: 105 =  3 5 7     s: 225 =  3^2 5^2
 x: 66 =  2 3 11     y: 22 =  2 11     s: 484 =  2^2 11^2
 x: 66 =  2 3 11     y: 165 =  3 5 11     s: 1089 =  3^2 11^2
 x: 70 =  2 5 7     y: 21 =  3 7     s: 539 =  7^2 11
 x: 70 =  2 5 7     y: 170 =  2 5 17     s: 1100 =  2^2 5^2 11
 x: 73 =  73     y: 57 =  3 19     s: 316 =  2^2 79
 x: 76 =  2^2 19     y: 57 =  3 19     s: 361 =  19^2
 x: 89 =  89     y: 890 =  2 5 89     s: 23763 =  3 89^2
 x: 97 =  97     y: 88 =  2^3 11     s: 303 =  3 101
 x: 102 =  2 3 17     y: 778 =  2 389     s: 18668 =  2^2 13 359
 x: 115 =  5 23     y: 95 =  5 19     s: 550 =  2 5^2 11
 x: 126 =  2 3^2 7     y: 226 =  2 113     s: 820 =  2^2 5 41
 x: 136 =  2^3 17     y: 425 =  5^2 17     s: 5491 =  17^2 19
 x: 145 =  5 29     y: 29 =  29     s: 1682 =  2 29^2
 x: 145 =  5 29     y: 116 =  2^2 29     s: 841 =  29^2
 x: 145 =  5 29     y: 120 =  2^3 3 5     s: 775 =  5^2 31
 x: 145 =  5 29     y: 314 =  2 157     s: 2327 =  13 179
 x: 145 =  5 29     y: 870 =  2 3 5 29     s: 21025 =  5^2 29^2
 x: 145 =  5 29     y: 986 =  2 17 29     s: 26071 =  29^2 31
 x: 153 =  3^2 17     y: 442 =  2 13 17     s: 5491 =  17^2 19
 x: 154 =  2 7 11     y: 253 =  11 23     s: 363 =  3 11^2
 x: 195 =  3 5 13     y: 51 =  3 17     s: 2556 =  2^2 3^2 71
 x: 208 =  2^4 13     y: 377 =  13 29     s: 1859 =  11 13^2
 x: 210 =  2 3 5 7     y: 205 =  5 41     s: 475 =  5^2 19
 x: 228 =  2^2 3 19     y: 57 =  3 19     s: 3249 =  3^2 19^2
 x: 246 =  2 3 41     y: 205 =  5 41     s: 1681 =  41^2
 x: 264 =  2^3 3 11     y: 433 =  433     s: 767 =  13 59
 x: 273 =  3 7 13     y: 442 =  2 13 17     s: 169 =  13^2
 x: 286 =  2 11 13     y: 165 =  3 5 11     s: 3509 =  11^2 29
 x: 286 =  2 11 13     y: 962 =  2 13 37     s: 19604 =  2^2 13^2 29
 x: 290 =  2 5 29     y: 470 =  2 5 47     s: 300 =  2^2 3 5^2
 x: 304 =  2^4 19     y: 593 =  593     s: 4777 =  17 281
 x: 310 =  2 5 31     y: 186 =  2 3 31     s: 3844 =  2^2 31^2
 x: 315 =  3^2 5 7     y: 295 =  5 59     s: 1450 =  2 5^2 29
 x: 349 =  349     y: 205 =  5 41     s: 4668 =  2^2 3 389
 x: 375 =  3 5^3     y: 231 =  3 7 11     s: 5004 =  2^2 3^2 139
 x: 377 =  13 29     y: 638 =  2 11 29     s: 2523 =  3 29^2
 x: 385 =  5 7 11     y: 330 =  2 3 5 11     s: 3025 =  5^2 11^2
 x: 385 =  5 7 11     y: 630 =  2 3^2 5 7     s: 1225 =  5^2 7^2
 x: 385 =  5 7 11     y: 660 =  2^2 3 5 11     s: 3025 =  5^2 11^2
 x: 390 =  2 3 5 13     y: 165 =  3 5 11     s: 6525 =  3^2 5^2 29
 x: 406 =  2 7 29     y: 357 =  3 7 17     s: 2989 =  7^2 61
 x: 408 =  2^3 3 17     y: 697 =  17 41     s: 3179 =  11 17^2
 x: 427 =  7 61     y: 183 =  3 61     s: 7442 =  2 61^2
 x: 465 =  3 5 31     y: 186 =  2 3 31     s: 8649 =  3^2 31^2
 x: 465 =  3 5 31     y: 754 =  2 13 29     s: 697 =  17 41
 x: 481 =  13 37     y: 40 =  2^3 5     s: 10479 =  3 7 499
 x: 481 =  13 37     y: 312 =  2^3 3 13     s: 6929 =  13^2 41
 x: 505 =  5 101     y: 105 =  3 5 7     s: 10900 =  2^2 5^2 109
 x: 568 =  2^3 71     y: 497 =  7 71     s: 5041 =  71^2
 x: 574 =  2 7 41     y: 133 =  7 19     s: 13083 =  3 7^2 89
 x: 577 =  577     y: 528 =  2^4 3 11     s: 4193 =  7 599
3
On

There is a beautiful parameterization by Lagrange and Legendre:

$$x^3 + a x^2y + b x y^2 + c y^3 = z^2\tag1$$

where,

$$x = u^4 - 2b u^2 v^2 - 8c u v^3 + (b^2 - 4a c)v^4$$

$$y = 4v(u^3 + a u^2v + b u v^2 + c v^3)$$

and $z$ is a $6$-deg polynomial.

In your case, with $a,b,c = 0,-2,1$, we have,

$$x^3 - 2x y^2 + y^3 = z^2$$

where,

$$x = u^4 + 4 u^2 v^2 - 8 u v^3 + 4 v^4$$

$$y = 4 v (u^3 - 2 u v^2 + v^3)$$

$$z = u(u^5 - 10 u^3 v^2 + 20 u^2 v^3 - 20 u v^4 + 8 v^5)$$