Question: Find $Aut\left ( \mathbb{Z}_{6} \right )$
Note that $\mathbb{Z}_{6}=\left \{ 0,1,2,3,4,5 \right \}$
Observe:
$\forall k \in \mathbb{Z}_{6}$, $k^{6}=e \equiv 0(mod6)$
Recall: Suppose $\phi$ is an isomorphism from a group G to G. Then $\forall a \in G, \left |\phi \left ( a \right ) \right |=\left | a \right |$
But $\alpha$ is an isomorphism so is by definition also a Homomorphism. So, $\forall k \in \mathbb{Z}_{6} \left ( k \right )\alpha=\left ( 1+\cdot \cdot \cdot +1\right )\alpha=\left ( 1 \right )\alpha+\cdot \cdot \cdot +\left ( 1 \right )\alpha=k\left ( 1 \right )\alpha$
Recall: $Aut\left ( \mathbb{Z}_{n} \right )\cong U\left ( n \right )$
So, $Aut\left ( \mathbb{Z}_{6} \right )\cong U(6)=\left \{ 1,5 \right \}$
Thus, we deduce the possible candidates to be $\left ( 1 \right )\alpha=1$ or $\left ( 1 \right )\alpha=5$
Here is where I am unable to progress further. Any help is appreciated.
Your approach starts off in the right direction, but then suddenly
Then what's left to prove? And why bother with the rest of your argument?