I have been doing a lot of tangent line problems and they follow a pretty basic pattern. Plug in $x$ to find the $y$ value. Find the derivative and the slope and then $b$. However, with these hyperbolic functions, my work is looking really messy and I am unsure how to find the $y$ value. I want to be able to do this without a calculator. Any help would be appreciated. Thank you.
2026-02-22 21:02:56.1771794176
Find the tangent line for the following: $(\operatorname{arcsec} x)^2$ at $x = 2$
149 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in DERIVATIVES
- Derivative of $ \sqrt x + sinx $
- Second directional derivative of a scaler in polar coordinate
- A problem on mathematical analysis.
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Holding intermediate variables constant in partial derivative chain rule
- How would I simplify this fraction easily?
- Why is the derivative of a vector in polar form the cross product?
- Proving smoothness for a sequence of functions.
- Gradient and Hessian of quadratic form
Related Questions in HYPERBOLIC-FUNCTIONS
- Proving an inequality of functions over $\mathbb{C}$
- How do I show this :$\int_{-\infty}^{+\infty} x^n 2\cosh( x)e^{-x^2}=0$ if it is true with $n$ odd positive integer?
- $w =\operatorname{arcsinh}(1+2\operatorname{arcsinh}(1+2^2\operatorname{arcsinh}(1+2^{2^2}\operatorname{arcsinh}(1+\dotsm$
- "Discovering" the hyperbolic functions $\cosh(x)$ and $\sinh(x)$
- how do we prove integral sechx?
- how to calculate the value of $\int_{-\infty}^\infty \frac{e^{ax}}{\cosh x}\,dx$
- Find all values of following inverse hyperbolic trig function
- showing the identity of a hyperbolic function
- Find the tangent line for the following: $(\operatorname{arcsec} x)^2$ at $x = 2$
- Find the points of a hyperboloid where the tangent plane is parallel to a plane
Related Questions in TANGENT-LINE
- Further Problem on Tangents Requiring the Use of Differentiation
- Locus of mid point of intercepts of tangents to a ellipse
- Circle geometry with tangent line
- Calculating the tangent line from a point to the surface of a sphere
- how can I find the tangent equation for $y=f(x)$ in $M(1,y_0)$ $(y_0 > 0)$?
- Equation of a line that is tangent to 2 curves
- Finding the tangent of a spiral with points not strictly on the spiral
- Finding whether a parametric curve has a well defined tangent at the origin
- tangents/cotangents on unit circles
- Length of Line Between Concentric Circles Based on Skew of Line to Circles
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Sorry I don’t have time to put my work into text.
Hope it is clear enough.
At $x=2$, the positive value should be taken.